


ple, to conveniently manage email attachments, a user could write

a recipe that uploads all attachments from newly received emails

to her OneDrive folder. Later, if the user receives an email with a

malicious attachment and uses OneDrive to sync multiple devices,

then the malicious attachment would automatically be copied to

multiple devices, increasing the likelihood that the user will mis-

takenly execute the malicious program.

These examples show that making it possible to almost arbitrar-

ily connect smart devices and online services also introduces many

new opportunities for users to harm themselves, whether through

unintentionally leaking information, undermining their physical se-

curity, or exposing themselves to cyber threats. To investigate the

extent to which users may be creating recipes that expose them to

potential security and privacy risks, we examined a set of 19,323

unique published IFTTT recipes—most recipes are published so

that they can be reused—collected by Ur et al. [31]. Based on our

manual inspection of the recipes, we defined an information-flow

lattice consisting of labels that specify the secrecy and integrity lev-

els of recipe components. We analyzed individual recipes based on

this information-flow model. Concerningly, we found that around

50% of the recipes involve either a secrecy or an integrity violation

(or both). By manually examining a random sample of these vio-

lating recipes, we categorized the potential harms to users into four

broad categories. In doing so we also validated the results of our

information-flow violation analysis: while the recipes that our anal-

ysis flags as violations are sometimes likely consistent with users’

intentions, they in general do have the potential to cause or increase

the risk of harms such as embarrassment, leaking behavioral data,

or even physical harm.

We also observe that recipes can inadvertently be chained to-

gether, with the outcome of one recipe causing another recipe to be

triggered. The existence of such chains does not appear to be part

of the IFTTT programming model, and both the possibility and the

existence of specific chains among a user’s recipes is opaque to the

user. We examined the prevalence of recipe chains in our dataset

and how they affect users’ risk. We found that for users who use

30 recipes—slightly above the norm—on average at least two of

their recipes will form a chain, and more than half of these chains

contain a potentially unsafe recipe.

Our paper makes the following contributions:

• We defined a multi-level information-flow lattice for label-

ing the secrecy and integrity characteristics of IFTTT trig-

gers and actions.

• We apply our model to publicly shared IFTTT recipes: we

decorate recipes with security labels and encode them in Pro-

log for automated analysis.

• We quantitatively analyze the recipes for secrecy and integrity

violations, providing the first insight into the extent to which

published recipes may involve privacy or integrity violations.

• We develop a categorization of potential harms that violating

recipes can inflict by manually inspecting a random selection

of violating recipes.

Roadmap. In Section 2, we provide a brief overview of the IFTTT

framework. Section 3 describes our information-flow model. We

describe the findings of our analysis in Section 4, and the possible

harms that result from violations in Section 5. Section 7 discusses

the implications of our findings and the limitations of our approach.

We conclude in Section 8.

2. BACKGROUND ON IFTTT
If-this-then-that (IFTTT) [6] is an end-user programming frame-

work to connect smart devices and online services, based on a

trigger–action paradigm. The connectible devices and services are

known as channels; examples are Twitter, Google Drive, Smart-

Things, and Nest thermostats. Each channel has a specific set of

events that can trigger a recipe, and another set of events that can

form the response to the trigger being executed. For instance, the

triggers in the Nest thermostat channel are setting the thermostat

to Home, Away, or Eco modes, or the temperature falling below or

rising above a threshold. The actions that can be triggered include

setting the thermostat to the different modes or setting the temper-

ature to a specific value. To create a recipe, the user selects the

trigger and action channels and events, and then fills in any neces-

sary parameters, known as ingredients, to fully specify the trigger

and action events. Ingredients can be an email address, a phone

number, a link to Dropbox folder, or a specific value (e.g., to which

to set the temperature). In other words, ingredients are the person-

alized components of a recipe.

IFTTT is constantly adding new channels. In October 2016 there

were 364 channels [8], for which we provide a broad, informal cat-

egorization in Fig. 1. The smart home category includes climate

control, home security, lighting, and other smart appliances. The

personal category covers fitness wearables, smart watches, smart-

phones, and photo apps. Social and online media channels include

social media sites and news networks, while business and commu-

nication tools span workflow trackers, email, finance apps, docu-

ment reviewers, and cloud storage. Many channels deal with cal-

endars, to-do-lists, notifications, and task management; we call this

category task tracking. The smart home category contains by far

the largest number of channels. As we discuss later, however, the

majority of the most popular channels belongs to the social and

online media category (see Section 4.1).
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Figure 1: Breakdown of IFTTT channels into five broad categories.

IFTTT has seen a large increase in its user base in recent years;

in 2015, IFTTT was reported to have more than one million unique

users [4]. With the emergence of the IoT, the use of IFTTT is ex-

pected to continue growing [1].

3. INFORMATION-FLOW MODEL
We next describe the information-flow model we developed to

reason about the security and privacy risks of IFTTT recipes. By

examining a subset of recipes, we develop two sets of information-

flow labels; we arrange them in a secrecty lattice and an integrity

lattice to describe the types of information that flow from trigger

events to action events (Section 3.1). Then, we give examples of

potentially unsafe recipes identified by associating labels to events

(Section 3.2). Finally, we formalize the notion of recipe chains and

describe their contribution to potential security and privacy risks

(Section 3.3). Results of analyzing our dataset of IFTTT recipes

using this information-flow model are presented in Section 4.

3.1 Security Lattices
There are two types of information-flow policy violations: se-

crecy violations and integrity violations. Secrecy violations occur

if information that should only be known only by a specific set of

people becomes available to a larger audience, potentially leaking



private information [28, 20]. Integrity violations occur if infor-

mation from less trusted sources influences information from more

trusted sources, potentially corrupting it [28, 10].

To reason about information-flow properties of IFTTT recipes,

we label each IFTTT trigger and action with one or more secrecy

and integrity labels. In our model, secrecy labels denote who could

know that the event took place or the details of the event, and in-

tegrity labels denote who could cause the event. As is standard,

we define our security lattices based on a partial order, written ⊑

between security lables [33]. It is safe to allow information to flow

from a lower (public or trusted) label to a higher label (private or

untrusted), but not the other way around. If a recipe starts at a pri-

vate source and ends at a public sink or if it starts at a untrusted

source and ends at a trusted sink then it is a violation of secrecy or

integrity policies.

To determine which security labels would be effective at describ-

ing the secrecy and integrity characteristics of IFTTT trigger and

action events, we examined recipes to develop candidate labels,

and then iteratively refined the candidate labels through applying

them to additional recipes. This process culminated in the con-

struction of two lattices, shown in Fig. 2 and 3. The secrecy lattice

has three levels. At the top there is the private label, denoting infor-

mation that only the user of a recipe knows, such as Fitbit activity,

or received texts and emails; the middle level is composed of two

somewhat privileged groups (discussed next); and the lowest level

is public, describing information with unrestricted access (e.g., that

has been publicly shared). In the middle level, restricted physi-

cal describes events that take place in partially privileged spaces,

such as a home or office. Anyone in close proximity is privy to

such events and could potentially observe them; but these events

are invisible to users not in proximity. For instance, an event in this

category could involve a phone ringing, lights blinking, or a ther-

mostat being adjusted. Similarly, restricted online describes events

that take place online with a restricted audience, primarily through

social media. Events in this category could be Facebook or Twitter

posts, updates on a work management app, or Spotify activity.
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Figure 2: Secrecy lattice. A violation occurs when the corresponding labels
of a trigger–action pair go from more restricted to less restricted or if they
go between the middle groups.

The integrity lattice has a similar structure to the secrecy lat-

tice. The most restricted label is now trusted, referring to events

that only the user should be able to cause (i.e., trigger), and the

least secure label is untrusted, used for events that could poten-

tially be caused by anyone. There is a slightly less trusted variant

of the trusted group, trusted other, which describes sources that the

user does not control but would be extremely hard to manipulate

by others, such as natural phenomena (e.g., weather or time of day,

as reported by an authoritative source) or a reputable website that

is unlikely to be easily manipulated (e.g., The New York Times).

Similarly, there is a slightly more trusted variant of untrusted called

untrusted group, which describes events that can be manipulated by

unknown groups of people (e.g., the event that captures that a new

post has become the most popular post on a subreddit can be trig-

gered by an arbitrary collection of people who collude to upvote

that post). Restricted online and restricted physical refer to similar

events as in the security lattice.
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Figure 3: Integrity lattice. It has a similar structure as the secrecy lattice
with additional variants of trusted and untrusted sources.

We allow an event to have more than one label to account for

different contextual situations, such as a motion sensor that could

be indoors (restricted_physical integrity) or outdoors (untrusted in-

tegrity). We chose these labels for our lattice because they repre-

sent realistic groupings of the behaviors of devices and services

according to their intended use, while still being general enough

to perform user-independent analysis. Because these groupings are

broad, our estimate of risk is conservative; some violations we re-

port would disappear with more accurate knowledge of a user’s

environment. For instance, a cloud storage folder could either be

private or shared to a group; for our analysis, we assume the latter,

even though it leads to reporting secrecy leaks that do not exist if

the user specified a private folder. Making the labels more precise

(e.g., by instantiating them with ingredients, as described in Sec-

tion 2) would require us to know exactly where individuals have

installed their devices, what privacy settings they have on their so-

cial media accounts, etc. Such fine-grained labeling would allow a

more accurate analysis of risks, but is not compatible with a large-

scale analysis, which is our focus.

3.2 Examples of Unsafe Recipes
A recipe has a security violation if a more restricted trigger is

linked to a less restricted action [33] or if the labels of the recipe’s

trigger and action aren’t comparable (i.e., the middle-level labels

restricted physical and restricted online). Since each trigger and

action can potentially have a set of labels, a recipe can be catego-

rized into one of three groups: definite violation (all combinations

of labels violate information-flow constraints, as described by the

secrecy and integrity lattices), maybe violation (some combinations

of labels violates information-flow constraints), or safe (no combi-

nations of labels violates information-flow constraints).

Following are examples of four violating recipes in the context

of our information-flow model.

Definite secrecy violation: private → public. If I take a new photo

with the front camera of my phone, add it to Flickr as a public

photo. Photos taken with a phone camera are by default only seen

by the user, so the trigger label is private. Anyone browsing Flickr

can see a public photo, so the action label is public. This recipe

could be harmful if it causes a user to unintentionally upload pic-

tures of private documents.

Maybe secrecy violation: restricted_physical → (private, restrict-

ed_online). If I enter a specific area, upload a file to Google Drive.

Nearby people can see you enter the area, so the trigger is restric-

ted_ physical. The label of the action depends on the setting of the

Google Drive folder. If it is shared with a group (e.g., housemates
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Figure 5: Top eight trigger channels used by users in our dataset.
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Figure 6: Top eight action channels used by users in our dataset.

4.2.1 Assigning labels to triggers and actions

After devising a preliminary set of labels, we assigned one or

more labels to each trigger and action based on the recipe descrip-

tion and what we know about the particular channels. After run-

ning initial analyses, and after revising the labels, we revisited and

adjusted the assignments. As a final confirmation that the label

assignments were reasonable, two of the authors took a random

sample of 100 recipes and relabeled them. They used the first 20

recipes as a training exercise, discussing the labeling together, and

then labeled the remaining 80 recipes independently. The coders

used a scoring system that awarded one point for full agreement,

0.5 points for partial agreement (in the case of multiple labels), and

zero points for full disagreement. 78% of the time coders agreed

on both labels (or label sets); the remaining 22% of the time one

coder’s labels were a superset of those applied by the other coder

(there was no instances of full disagreement among the coders).

4.2.2 Identifying linked recipes

Although recipe chains are simple to define in the abstract, iden-

tifying chains among our actual recipes is less straighforward.

Direct linking: Determining whether two recipes are directly

linked requires us to match the text description of an action to that

of a trigger. For example, in the chain formed by forwarding one’s

Twitter post to Facebook and then from Facebook to LinkedIn, the

action of posting to Facebook and the trigger of posting to Face-

book are “Create a link post” and “New link post by you”, re-

spectively. While the link between these two descriptions can be

discovered easily by manual inspection, identifying such links au-

tomatically is challenging. Our approach was to manually rewrite

some of the actions to match their corresponding triggers. For ex-

ample, if an action is “turn switch on” and a matching trigger is

“switch turned on”, we would rewrite the action as “switch turned

on”. This is feasible because the match can only happen for actions

and triggers in the same channel and the number of channels in the

dataset is limited.

Physical connections: Connections between recipes through the

physical medium are often subtle. For example, turning off a fan

via a smart plug will cause the temperature in a room to rise, which

may trigger a recipe whose trigger is the temperature rising above a

threshold. However, the smart plug and the thermostat are different

IFTTT channels, and the action and trigger have seemingly unre-

lated descriptions, making it difficult to automatically recognize

such connections. Nevertheless, physical connections are likely

and interesting events within a smart home.

To track physical connections, we labeled relevant triggers and

actions with a physical channel (e.g., temperature, sound, or light)

and a physical event (e.g., level_change_up, turn_on). Physi-

cal events fall roughly into two categories: those that change the

level of a physical medium and those that check for a change in

level, e.g., turning on a heater, and a Nest thermostat checking if

the temperature is above a threshold. Some triggers depend on the

external state of a device, such as an alarm system. If an alarm

system is armed, and something happens to trigger motion, it could

also cause a recipe that responds to the alarm system being trig-

gered to fire; but if the alarm is not armed nothing would happen.

Tracking situations like these required that we explicitly model the

state related to some of the triggers and actions. For our dataset,

alarm is the only trigger we found whose state influences linking

between recipes.

One particular issue we faced was the possible relationship be-

tween power and temperature events. Based on our observa-

tion of recipe descriptions, the devices being controlled by power

switches, such as heaters and fans, often affect temperature. There-

fore, in our model we associate actions that turn power switches on

or off with triggers that fire on temperature changes. This assump-

tion leads to false positives in our analysis, since a precise analysis

depends on what device the power switch controls.

Another issue with physical connections is that connections of-

ten depend on the location of the devices themselves. If there is

motion in the backyard, but the user has a motion sensor in the front

yard, nothing will be triggered. Further, many connections depend

on the values that users specify for their recipes. For example, a

user can have a recipe with an action that sets his thermostat to a

specific temperature chosen by the user when the recipe is created.

The same user has another recipe that triggers when the tempera-

ture inside his home is above a certain threshold. These two recipes

will connect only if the temperature he selected for the first recipe is

above that threshold used in the second recipe. Without knowledge

of specific values of the ingredients, we can only model potential

connections, not necessarily actual ones.

4.3 Recipe-level Violations
Out of the 19,323 unique recipes, we found that 9,637 recipes

(49.9%) were unsafe, as they involved either a secrecy or an in-

tegrity violation. 4,432 recipes (22.9%) contained only integrity vi-

olations, 3,220 recipes (16.7%) only secrecy violations, and 1,985

recipes (10.3%) both secrecy and integrity violations. These num-

bers include the recipes with both definite and maybe violations

(defined in Section 3.2). If we consider only definitely violating

recipes, there are 7,150 (37.0%) unsafe recipes: 3,605 (18.7%)

with only integrity violations, 1,927 (10.0%) with only secrecy,

and 1,618 (8.4%) with both. Fig. 7 illustrates these results. There

is no correlation between the the number of times a recipe is shared

and the probability that it is unsafe.3

We next investigate the number of violations that occur between

specific pairs of labels. For this, we focus on total violations,

i.e., including maybes; results based on only definite violations

are roughly similar. When counting violations for a recipe with

multiple combinations of trigger and action labels, we count each

violating combination as one whole maybe violation for that partic-

ular pair of trigger and action labels. For instance, if the trigger’s

3Nagelkerke’s pseudo R
2
≈ 0





Recipe Sampling Weighted 30 Top10+Rand10 Top20+Rand10 Top30+Rand10

mean med stddev mean med stddev mean med stddev mean med stddev
R

ec
ip

es

Unsafe Recipes 8.4 8 2.4 6.6 7 1.5 10.6 11 1.6 14.5 14 1.5

inc. maybes 13.2 13 2.5 12.0 12 1.6 19.0 19 1.6 26.0 26 1.6

Sec. Viol. 2.2 2 1.4 2.5 2 1.1 2.5 2 1.2 3.5 3 1.1

inc. maybes 6.8 7 2.2 6.6 7 1.4 7.7 8 1.4 12.7 13 1.4

Int. Viol. 7.2 7 2.3 4.5 4 1.4 8.5 8 1.4 11.5 11 1.4

inc. maybes 9.3 9 2.4 7.3 7 1.5 13.3 13 1.5 16.2 16 1.5

C
h

ai
n

s

Number 1.2 1 1.4 0.3 0 0.6 1.7 1 1.0 2.0 2 1.1

Avg. Length 2.0 2 0.2 2.0 2 0.0 2.0 2 0.2 2.0 2 0.2

Unsafe 0.6 0 0.9 0.2 0 0.4 1.5 1 0.8 1.7 1 0.9

inc. maybes 1.0 1 1.2 0.3 0 0.5 1.6 1 0.9 1.8 2 1.0

Table 2: Simulating user-level violations for different size of recipe sets. Considered different sampling techniques for selecting the recipes.

these strategies. We found that the choice of strategy does not make

a significant difference to the results of our analysis.

For each sampling strategy, the experiment was repeated 500

times. We summarize our results in Table 2. The average num-

ber of unsafe recipes was above 28% (44% including maybes) for

all strategies. This tells us that an average IFTTT user will have a

significant number of recipes that potentially impose security and

privacy risks. Another interesting finding is that the average user

who has at least 30 recipes will have at least one recipe chain. The

average length of recipe chains is two regardless of how we select

the set of recipes to analyze. This means that the likelihood of more

than two recipes chaining together is low, unless a user intention-

ally adopts recipes that chain. In fact, among the top 50 recipes

there are no unsafe chains. Finally, more than half of the chains in-

clude unsafe recipes. If an unsafe recipe is a part of a chain then its

consequences could be exacerbated, especially if the other recipe

is also unsafe. An example of recipes chaining, and potentially ex-

acerbating risk through doing so, is as follows: One recipe allows

any Facebook user who can tag the victim in a picture to cause that

picture to be added to the victim’s iOS album; another posts any

new photo in the iOS album publicly to the victim’s Flickr account.

5. IMPLICATIONS OF VIOLATIONS
Once we generated the list of recipes that involved information-

flow violations, we wanted (1) to confirm through manual exami-

nation that such recipes could often cause users harm; and (2) to

categorize the types of harm that could be inflicted.

To do this, we started by examining some recipes manually, and

we found that we can categorize the potential harms (risks) into

four broad groups as described below–

• Personal: Cause embarrassment or leak behavioral data

• Physical: Damage physical health or property or goods

• Cyber Security: Disrupt online service or distribute malware

• Innocuous: Seemingly harmless

The most noticeable harm was of personal nature, like causing

personal embarrassment by leaking sensitive pictures or current lo-

cation. We also found recipes that can cause—or increase the risk

of—physical harm such as making break-ins easy, damaging the

physical hardware of IoT devices, or triggering migraines or other

health conditions. Other recipes could be exploited by a malicious

attacker to distribute malware through emails or even enable him

to carry out denial-of-service like attacks to disrupt online services.

For some recipes we could not envision a realistic harm (i.e., any

possible harm simply seemed too far fetched) even though the as-

signed labels seemed logically correct. There is no way to get rid

of these violations without having contextual information about the

user’s exact situation, so we categorize them as false positives and

call them innocuous.

Another interesting aspect of the threat model is that not all vi-

olating recipes need an explicit attacker to have an adverse conse-

quence to the user. A recipe that uploads daily fitbit statistics to

twitter has the potential to embarrass the user without any interfer-

ence from a third party, whereas the recipe that uploads all email

attachments to OneDrive will only be harmful if someone is spam-

ming or sending malicious attachments. To capture this distinction,

we give each harmful recipe an additional label of self or external.

For illustration, we provide one example recipe for each category

of potential harm.

Personal: If I take a new photo, then upload on Flickr as public

photo. This recipe could leak sensitive or embarrassing information

if one took a picture of a check to send to landlord, or a picture of

one’s romantic partner. This harm is labeled as self-inflicting as any

harm is the result of the user’s own behavior.

Physical: If the last family member leaves home, then turn off

lights. This recipe, by turning off the lights in a predictable fashion,

signals that your home is empty, making it easier for a burglar to

plan the opportune time to rob the place. This harm is labeled as

external as a third-party can potentially inflict the harm.

Cyber Security: If there is a new email in your inbox with an

attachment, then add that file to OneDrive. This recipe could be

used to spread malware to all devices synched with a OneDrive

account. If a malicious attachment gets propagated to all synched

devices, it increases the probability that the file will be opened by

the user, especially since it is removed from the suspicious context

(i.e., the email). This harm is labeled as external as a third-party

can potentially inflict the harm.

Innocuous: If a smart switch turns off, then append to a text file in

Dropbox. Technically, there is an integrity violation here because

anyone who can access the switch can fill your Dropbox space,

however, this recipe cannot be spammed as a single misuse would

only generate a few bytes of data (assuming the attacker does not

control your smart switch, in which case the attacker can inflict

greater harm anyway).

After determining the potential categories of harm, we next try to

quantitatively measure how many of the violating recipes fall into

each these categories. To do this, we manually examined randomly



selected 200 recipes from all the violating recipes in our dataset.

The first 20 recipes were used for training; two coders together as-

signed one or more harm labels to each recipe and discussed the

rationale for their decision. For the remaining 180 recipes, the

two coders independently categorized each recipe’s harm(s) and

came together to compare results. If the labels matched exactly,

we awarded one point of agreement, for partial match (in the case

of multi-labels) we awarded 0.5 points of agreement, and if the

coders decided one of them had fully mislabeled the harm category

for a recipe, we awarded zero points. Initially the coders agreed

on 87% of the categorization and were able to fully agree after dis-

cussing the remaining conflicts. There were no disagreements over

whether a recipe needed a third party to be harmful (i.e., in the task

of assigning self or external labels).
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Figure 10: Categorical analysis of the implications of information-flow
violations. External and self denotes that the cyber harm is external and
the personal harm is self-inflicted.

Fig. 10, highlights our findings after performing inter-coder

agreement. As seen in Fig. 10, a little more than a third of the

recipes were innocuous, or not likely to cause harm. Most of the

harmful recipes had personal consequences, leaking unintended in-

formation or causing embarrassment or agitation. The next largest

category is cyber security harms, dealing with damage to digital

devices and cloud services, at around 13%. Recipes that may in-

crease the risk of physical damage are less common, accounting

for around 10% of the violating recipes, and there are a handful of

recipe that have multiple types of harm.

It is worth noting that there can be overlaps between categories

and side effects that we could not determine just from the recipes.

For example, damage to a device will probably cost some money to

fix or replace, and embarrassments that significantly effects one’s

public image can have far-reaching repercussions, including finan-

cial ones. If a recipe leads a user to accidentally post a politically

controversial tweet, this could cost her friendships and other po-

tential opportunities. It is also interesting that most violations have

outcomes that involve data being saved or published online, primar-

ily through social media or cloud services, and therefore can have

diverse indirect consequences. For example, many recipes involve

posting private information to online services where this informa-

tion may further be used in different ways; if the original posting

of private information was unintended, the consequences of that

accident may be far-reaching and hard to quantify.

6. RELATED WORK
With the widespread use of various online services and IoT de-

vices, end-user programming has received much research attention

in the last decade as it allows users to easily interface different

devices with other devices or online services. Researchers have

looked at how an average user can customize their smart home

using trigger-action programming [30, 13, 32], while others have

also extended such automation techniques to commercial build-

ings [26]. Researchers have also studied the usability of existing

trigger-action programming frameworks and have propose guide-

lines for developing more user-friendly interfaces [13, 21, 11, 29,

15]. Recently, there have been efforts to built semantic parsers that

automatically map IFTTT style recipes described in natural lan-

guage to actual executable codes [27, 12].

While end-user programming makes it easy for users to write au-

tomation rules, it does complicate things when multiple users share

the same environment and try to enforce their own set of rules. In

such scenarios not only conflicts among individual rules arise, but

also unforeseen chaining of rules start to emerge. Researchers have

studied such conflicts and have proposed ways to resolve such con-

flicts for home and office environments [24, 26, 22]. A similar kind

of conflict resolution study has also been done in the context of

designing a smart city [23].

Information flow based security analysis has long been an active

field of research. Information flow controls enable us to track the

propagation of information in and across systems, and thus help

us prevent sensitive information from being released. Dorothy E.

Denning’s work on using a lattice model to guarantee secure infor-

mation flow in a computer system [14] was seminal in this field.

Later on, Sabelfeld et al. provide a comprehensive survey of the

past three decades of research on information-flow security [28].

Myers et al. show how to incorporate language-based information

flow controls into simple imperative programming languages [25].

In the era of smartphones, information-flow based analytic frame-

works such as TaintDroid [17] and PiOS [16] enabled users to

track how their private data is being used by third-party applica-

tions. With the fast adoption of IoT devices in the recent years,

researchers are now focusing on analyzing the security and privacy

risks of IoT devices. But like any emergent technology, IoT too is

rife with potential security risks [18]. Moreover, current IoT pro-

gramming frameworks only support permission-based access con-

trol on sensitive data and are ineffective in controlling how sensitive

data is used once access is gained. FlowFense [19] framework pro-

vides such control by imposing developers to declare the intended

data flow patterns for sensitive data. Our work looks at analyzing

the security and privacy risks of end-user programming frameworks

like IFTTT without requiring fine-grained user settings.

7. DISCUSSION AND LIMITATIONS
We next discuss some implications of our results, the limitations

of our approach, and how applets, the new form of recipes, impact

our overall analysis.

7.1 Levels of Concern and Intended Leaks
Our breakdown of violating recipes based on the labels of trig-

gers and actions reveals some interesting insights. One insight is

that violating recipes vary significantly in the amount of risk to

which they expose users. For example, an information flow from

private to public is more concerning than from private to one of the

restricted groups. Sharing one’s health related information (e.g., a

report generated by a Fitbit device) with one’s Facebook friends

might be indiscreet, but it is probably less risky than sharing it on

a public web forum. Likewise, an integrity violation caused by an

untrusted trigger is more concerning than one caused by a restric-

ted trigger. A family member or a friend figuring out he can open

a window by increasing the temperature inside your home may not

use this knowledge maliciously, whereas a stranger might.

As we discuss in Section 4.3, for most pairs of labels that are

indicative of a secrecy violation, there is a significant number of

recipes that use them as trigger and action labels. The largest such

sets are recipes that pass information from private to restricted on-



line and from private to restricted physical. Users are leaking pri-

vate information, but mostly to specific groups of people rather than

the public at large. The types of integrity violations are less varied:

there are few recipes that connect restricted groups, with the vast

majority of violating recipes going from trusted_other to trusted

and from untrusted to trusted.

In retrospect, these are the types of violations to be expected.

Two major uses of IFTTT recipes are controlling smart home de-

vices and pushing information to social media. It is easy for the

latter to result in leaking private information. In the former case,

many IFTTT actions are configured so that the action appears to

come from the user, or at least an account controlled by the user.

Indeed, this seems inherent in the idea of automation for conve-

nience: a user gives up direct control of something he would do

manually and is instead allowing a program to automate it, some-

times based on untrusted input.

Although many violating recipes are likely consistent with what

users intended, their behavior is not necessarily innocuous. Harm-

ful side effects are probably not at the forefront of the user’s mind,

especially since much of the conversation surrounding the ability to

arbitrarily link devices and services focuses on the convenience and

novelty of it. Since the concept is innovative, IoT-specific security

principles and behaviors are not yet in the public awareness. For ex-

ample, people generally do not have to worry about any new emerg-

ing threats for an old, non-smart home. While insecurities exist for

conventional homes, attack vectors and their respective defenses

are generally well known. Connecting one’s home with recipes

can introduce new methods of attack of which the user might not

be cognizant, and, thus, for which good safeguards might not be

in place. As shown in our harm analysis, even recipes seemingly

working as intended can have harmful consequences that the user

might not have considered when adopting the recipe. This sug-

gests that it is important to educate users about the potential risks

inherent in many of their recipes, so that they can make rational

decisions about whether the harms outweigh the benefits or at least

be aware that new safety measures may be necessary.

7.2 Limitations
Some major limitations of our work follow from its abstract na-

ture. We made design choices that resulted in loss of some detail in

order to keep the model general enough to be useful without user-

specific parameters (which we do not have). We used fairly broad

security labels, labeled device APIs as opposed to data, and chained

together recipes that might not actually interact, all of which leads

to overapproximating the number of violating recipes. We also

lacked concrete data about which specific sets of recipes individ-

ual users adopted and so had to approximate such sets.

Based on these limitations, we see a few directions for future

work. We would like to make these analyses more applicable to an

individual user, perhaps by creating a web interface that would in-

form users of security and privacy risks as they write their recipes.

Making such a tool would remove some of the weaknesses of our

current approach, as users’ specific instantiations of recipes could

be used to perform the analyses more precisely. In this interface, we

could also create explicit declassification and endorsement func-

tions that users would utilize to indicate when they are knowingly

creating or adopting recipes that contain information-flow viola-

tions. In addition to developing such a tool or interface, it would

be helpful to conduct user studies to collect data on the number and

types of recipes that specific users adopt, as well as to elicit infor-

mation about their awareness and perception of violations among

their recipes, and of IoT security concerns in general.

7.3 Applets: Enhanced Recipes
In November 2016 IFTTT introduced enhanced recipes called

applets and converted existing recipes to applets. Applets add three

major capabilities, which we discuss below, along with their impli-

cations for our analysis. Only registered IFTTT partners can create

applets with these new features; regular users can only adopt exist-

ing applets or create new ones that are equivalent to recipes.

Multiple actions: While recipes were limited to only one action

per recipe, applets can have multiple actions. This does not impact

our analysis, as an applet with n actions can be replaced with n

recipes with the same trigger.

Queries: Previously, an action would only contain information

from the trigger channel. Applets can execute queries to acquire

additional information about the state of query channels. For exam-

ple, an applet that sends a daily email about the user’s energy con-

sumption could query the user’s Harmony remote, a query channel,

to check if the TV is on or off. We may need to augment our model

to include new secrecy and integrity labels for query channels and

assign each query channel appropriate labels.

Conditions: With applets one can include code to conditionally

execute the actions. For example, a recipe that sends you an SMS

whenever it is raining can be made to not execute during the night.

We need to augment our model and analysis to consider flow of

information from conditions to actions. In particular, if the results

from queries can be used in conditions, then we need to make sure

that the query channel labels are also considered to identify infor-

mation leakage from query channels to the action.

8. CONCLUSION
Recipes with potential insecurities are endemic on IFTTT. Many

recipes are seemingly benign, but can cause personal, digital, or

even physical harm. While many of these risks exist in some

form without using recipes, such as oversharing to social media

or smart devices taking away control, the fact that they are hap-

pening through channels that the user might not have considered

harmful is of significant importance. If users do not realize that

there is a danger, they will do nothing to guard against it, rendering

them more susceptible to attacks. The prevalence of potential risks

among the recipes we examined strongly suggests that users need

to be informed about the security and integrity violations that their

recipes can potentially create, and of the potential consequences of

such violations, so that they can make well-informed decisions. In

this context, our work provides a foundation for tools and practices

to better inform and help users manage the risks they face.
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