
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, AUGUST 2023 1

Detecting Smart Home Device Activities Using
Packet-Level Signatures from Encrypted Traffic

Mohammad Shamim Ahsan, Md. Shariful Islam, Md. Shohrab Hossain Member, IEEE, Anupam Das Senior
Member, IEEE

Abstract—Despite the significant benefits of the widespread
adoption of smart home Internet of Things (IoT) devices, these
devices are known to be vulnerable to active and passive attacks.
Existing literature has demonstrated the ability to infer the
activities of these devices by analyzing their network traffic.
In this study, we introduce a packet-based signature gener-
ation and detection system that can identify specific events
associated with IoT devices by extracting simple features from
raw encrypted network traffic. Unlike existing techniques that
depend on specific time windows, our approach automatically
determines the optimal number of packets to generate unique
signatures, making it more resilient to network jitters. We
evaluate the effectiveness, uniqueness, and correctness of our
signatures by training and testing our system using four public
datasets and an emulated dataset with varying network delays,
verifying known signatures and discovering new ones. Our system
achieved an average recall and precision of 98-99% and 98-100%,
respectively, demonstrating the effectiveness and feasibility of
using packet-level signatures to detect IoT device activities.

Index Terms—Network traffic analysis, Packet-based signature

I. INTRODUCTION

The use of Internet of Things (IoT) devices (e.g., light
sensors, cameras, door locks, thermostats, etc.) has increased
rapidly in recent years. IoT provides a flexible and scalable
platform that can support various applications within a home
setting, e.g., enhance security, enable eldercare or childcare,
save energy, and automate appliances [35]. However, IoT
devices also create new attack vectors. For example, simply
knowing what devices reside inside a household can pose
both security and privacy risks. Knowing that there is a smart
lock can enable an adversary to launch targeted attacks, e.g.,
exploit unpatched vulnerabilities. Similarly, knowing that there
is a sleep monitoring device inside the home can reveal the
sleeping patterns of residents.

While most IoT devices encrypt traffic using standard pro-
tocols such as WPA2, such encryption only hides the payload,
that is, the contents of the exchanged messages or commands.
However, the related meta-data (e.g., packet lengths, traffic
rate) of the network traffic still leaks some information about
the messages exchanged [38]. Existing works in this domain

Mohammad Shamim Ahsan, Md. Shariful Islam and Md. Shohrab
Hossain are with the Department of Computer Science and En-
gineering at Bangladesh University of Engineering and Technology
(BUET), Dhaka, Bangladesh. (email: shamim19119@gmail.com, sharifulis-
lam08031998@gmail.com, mshohrabhossain@cse.buet.ac.bd)

Anupam Das is with the Department of Computer Science at North Carolina
State University, Raleigh, NC, USA. (email: anupam.das@ncsu.edu)

Manuscript received August 01, 2023;

have looked at extracting statistical features from traffic meta-
data to detect device events [1], [10], [11], [37], but such
approaches are prone to background traffic noise and thus
harder to generalize across varying settings [4]. Moreover,
most existing passive inference techniques can only identify
the device type and whether there is device activity (i.e., an
event), but not the exact type of event or command [2], [3],
[22]–[25]. The state-of-the-art work on packet-level signatures
for IoT devices is PINGPONG [28], which relies on the
packet arrival time window to detect device activities. This
time-window dependency can result in inaccurate detection
whenever the traffic rate significantly changes; because the
number of packets considered in a specific time interval for
matching signatures will be drastically more or less than that
considered during training. Also, such time delays can vary
significantly depending on the underlying internet connection.
Furthermore, for IoT devices that have more than two forms
of device status (e.g., STANDBY, ACTIVE, QUICKRUN,
STOP), PINGPONG considers separate events as binary type
and trains them independently, rather than training all the
events of the device at a time, resulting in additional overhead.

Our work aims to address the existing limitations of state-of-
the-art techniques to determine user activities on IoT devices
solely using encrypted network traffic. In particular, we seek
to answer the following questions: RQ1: Can we develop an
activity detection system that is independent of time-window?
We develop a methodology where we depend on a threshold
of packets rather than time-window for detecting events in
any network traffic. RQ2: How can we generate packet-
level signatures for devices with multi-type events without
prior knowledge about a device’s behavior? We analyze
how to automatically construct signatures from devices with
multi-type events using different features extracted from the
network traffic. RQ3: How well do the generated signature(s)
of a specific device maintain uniqueness and correctness
across independent datasets? We evaluate to what extent the
signatures of a device are unique and generalizable across
various datasets collected from different locations and under
different settings.

In summary, we introduce a packet-based signature gener-
ation and detection system that does not consider a temporal
threshold and can efficiently handle both binary and multi-
type events. Our system overcomes these limitations as we
experiment with a diverse range of smart home devices and
use only the packet length and direction for a specific number
of packets, simplifying the detection technique and achieving
higher recall and precision rates. We make the following

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3424299

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, AUGUST 2023 2

contributions:
• To generate and detect packet-level signatures, we establish

a threshold on the number of packets instead of relying
on time windows. Time window-based methods are less
effective across different datasets as they can be easily
impacted by traffic rate changes. Our approach is more
resilient to temporal fluctuations caused by network jitters,
as demonstrated through experiments on real-world datasets.

• To the best of our knowledge, we have obtained the highest
average recall and precision of 98−99% and 98−100%,
respectively, for any packet-level signature detection system
to date. We have also open-sourced our codebase 1.

• Our automated process captures new signatures from ex-
isting datasets, verified through cross-data validations. This
method systematically generates signatures for both binary-
type and multi-type events without prior knowledge of the
device’s behavior.

II. BACKGROUND AND RELATED WORK

A. Key Components of IoT-based System

A typical IoT system has four key components that work
together to provide the desired functionalities. An essential
component of an IoT system is sensors or end devices that
observe and capture environmental and physical changes. All
the collected data can be used in various domains and might
have various degrees of complexity. The second key compo-
nent of IoT is connectivity. The collected data needs to be
sent to a cloud-based infrastructure so that it can be processed
and analyzed. Based on the scale of the implementations, IoT
components can be connected over LANs, MANs, or WANs.
It can also be connected through Wi-Fi, Bluetooth, telephone
networks like LTE (popularly known as 4G Network), or
light-based technologies like Li-Fi (where light is used as a
mode of communication to maintain interconnections) [7]. The
gathered data from sensors are transmitted over the internet
using one of these technologies. The analytic component starts
functioning once the data is collected and delivered to the
cloud. IoT analytics are utilized here to get a sense of the
gathered data and to prevent it from getting corrupted. Last but
not least, the main internal key component of IoT is the user
interface which allows humans to interact with IoT devices
and systems. The collected information from the previous
components can be made available to users either in report
format or in the form of some actions like triggering an alarm,
notifying them through emails or texts, etc.

B. Data Communication Model for IoT

There are three different methods of communication be-
tween an IoT device and the backend cloud. First, an IoT
device can directly communicate with the cloud (i.e., Device
↔ Cloud). Second, the companion mobile app can exchange
information with the IoT device directly (i.e., Phone ↔
Device). Lastly, the companion mobile app can communicate
with the cloud (i.e., Phone ↔ Cloud). IoT manufacturers
typically create companion mobile apps to configure, control,

1https://github.com/MdShamim097/Packet-based-IoT-Event-Detection/

and interface with their corresponding devices. Therefore, data
from the IoT device can also reach the IoT cloud via the
companion app installed on a smartphone [36].

C. Related Works

There is a large body of work in the network measurement
community that uses traffic analysis to fingerprint applications
[5], [9], [12], identify anomalies [13], [21], attacks [32], or
malware [31]. In recent years, there have been multiple studies
to characterize traffic from IoT devices and develop techniques
to fingerprint their activities.

Hafeez et al. propose IoTGUARD [10], a self-adaptive semi-
supervised learning-based classification scheme for real-time
activity detection of IoT devices in edge networks. It predicts
malicious traffic based on the network activity of the device
generating the traffic. Peek-a-Boo [1] introduces a multi-
stage privacy attack utilizing machine-learning approaches
for detecting and identifying the types of IoT devices, their
states, and ongoing user activities by only passively sniff-
ing the network traffic. IOT-KEEPER [11] detects malicious
IoT network activity using a combination of fuzzy k-means
clustering and a fuzzy interpolation scheme for online traffic
analysis at the edge gateways. HomeSnitch [37] classifies IoT
device semantic behavior such as heartbeat, firmware check,
and motion detection using statistics derived from the entire
client-server dialog. PINGPONG [28] explores the sequential
and directional “ping/pong” behavioral patterns in IoT data
communication. Interestingly, the most important feature used
in HomeSnitch is the average number of bytes sent from
the IoT device to the server per turn, whereas PINGPONG
uses packet lengths and directions of individual requests (and
replies) to uniquely identify device events.

A recent paper by Ren et al. [15] presents a large-scale
and multidimensional analysis of information exposure from
IoT devices and reveals how these devices operate differently
due to different privacy regulations in the US and UK. The
paper also presents a classifier to infer event types spanning
many device categories. Researchers have also used DNS
queries to infer IoT devices [23], [30]. They also model traffic
characteristics to infer device-level activities. Sivanathan et
al. [2], [3] also leverage network traffic and uniquely build a
multi-layer model to fingerprint IoT devices. Ahmed et al. [4]
present the largest to-date study of IoT device fingerprinting
in which they consider multiple factors such as fingerprinting
across time, region, and different datasets and under different
constraints. Others have utilized data from different layers of
the system stack to identify IoT devices [18], [34].

Limitations of Existing Works. Most event inference tech-
niques rely on machine learning [1]–[3], [10], [17] or statistical
analysis of traffic time series [6], [11], [15], [37]. These
techniques have different limitations as they use different
approaches. IoTGUARD [10] cannot detect the event of a
device; rather, it can only tell whether an attack is going on
or not. Besides, the aggregated features used here are not
always appropriate for all scenarios; for instance, the total
amount of data transferred and the total number of connections
made depend on higher-level user activity rather than device

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3424299

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://github.com/MdShamim097/Packet-based-IoT-Event-Detection/

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, AUGUST 2023 3

TABLE I
COMPARISON WITH RELATED WORK ON IOT DEVICES.

Work Number of Aggregated Granularity of detection Dataset used Jitter Multi-event Discovering Computational
features used data used Device-activity∗ Device make-&-model⋄ (geographic origin) resilient detection new signatures overhead †

IoTGUARD [10] 39 ✓ ✕ ✕ 2 (US, UK) ✕ ✕ ✕ —
Peek-a-Boo [1] 197 ✕ ✓ ✓ 2 (US, IT) ✕ ✕ ✕ —
IoT-KEEPER [11] 38 ✕ ✓ ✕ 3 (US, NL) ✕ ✕ ✕ —
Apthorpe et al. [25] 8 ✕ ✓ ✓ 1 (US) ✕ ✕ ✕ —
Ren et al. [15] 14 ✓ ✓ ✕ 2 (US, UK) ✕ ✓ ✕ —
Sivanathan et al. [3] 4 ✓ ✕ ✓ 1 (AU) ✕ ✕ ✕ —
HomeSnitch [37] 13 ✓ ✓ ✓ 2 (US) ✕ ✕ ✕ —
PINGPONG [28] 2 ✕ ✓ ✓ 4 (US, AU) ✕ ✕ ✕ O(xn)

Our work 2 ✕ ✓ ✓
4 (US, AU)

✓ ✓ ✓ O(x)+ jitter dataset

* Inferring individual device-level activity; ⋄ Individual devices (different make and model); † x=number of devices, n=number of event types for each device; ‘—’ refers to
N/A as they use an ML-based approach rather than a packet-level signature.

activity. Unsupervised learning techniques may be hard to
interpret, especially for large feature sets (e.g., 197 features
in Peek-a-Boo [1]). HomeSnitch [37] lacks resistance to traffic
fluctuations. Moreover, it uses statistics (average, min, max)
derived from the entire client-server dialog, which may lead
to false positives at a large scale. Signature generation and
detection in PINGPONG [28] depends on time-window, which
may result in incorrect detection if the traffic rate slows down
or speeds up. IOTKEEPER [11] uses statistical approaches that
may reduce clustering performance when dealing with a large
number of features.

Moreover, these machine-learning approaches have limita-
tions in differentiating event types (e.g., distinguishing ON
from OFF). Especially, [2], [3], [17] use features like sleep
time, flow volume-duration, average packet size, peak-to-mean
ratio, DNS queries, and cipher suites, or uses source port, des-
tination port, direction, payload, window size and timestamps,
which can only identify the IoT devices; not the specific events
of those devices. Statistical analysis approaches depending on
time series also lack resistance to traffic fluctuations [6], [11],
[15], [37]. A series of papers by Apthorpe et al. [22]–[25] use
traffic volume-based signatures to infer IoT device activity, but
cannot always determine the exact type of the event. Arguably,
by observing changes in traffic rates, it is only possible to
identify whether any user interaction occurs or not; but not
which kind of interaction has occurred.

Distinction from Prior Work. Our work is inspired by
the aforementioned work, especially PINGPONG [28], which
detects user activity of IoT devices using packet-level signa-
tures. Our primary and differentiating goal is to overcome the
limitations of existing works by implementing a “packet-based
signature generation and detection system,” which depends
on packet counts instead of time-window, making it more
resilient against time delays and network jitters. We also
focus on handling multi-type events rather than only binary
(ON/OFF) events as analyzed by PINGPONG [28]. Through
comprehensive evaluation, we see that our proposed approach
performs better in detecting activities of IoT devices and
sensors, as described in Section IV. Moreover, we discover
some new signatures that are not only different from the
existing ones but also smaller in size, indicating the efficiency
of our packet-based approach. Furthermore, the development
of the multi-event detection technique makes our system more
resource-efficient since it requires only O(x) computational
overhead; whereas PINGPONG requires O(xn), where, x and
n are the number of devices and the number of event types for
each of the devices, respectively. Table I provides an in-depth

comparison with related works, highlighting the contributions
of our work over existing studies.

III. PROPOSED APPROACH

In this section, we describe our system architecture, method-
ologies, algorithms, and heuristics for generating signatures.

A. Threat Model

Our setup accounts for a passive adversary capable of
monitoring network traffic from smart home devices. We
consider two types of adversaries: a WAN sniffer and a Wi-
Fi sniffer, as seen in previous works [28]. The WAN sniffer
observes network traffic between the home router and the
ISP network (or beyond), while the Wi-Fi sniffer monitors
encrypted IEEE 802.11 wireless traffic. The WAN sniffer can
inspect IP headers but lacks device MAC addresses for traffic
identification. The Wi-Fi sniffer lacks the WPA2 key and can
only access clear text information, including MAC addresses,
packet lengths, and timing data. Both adversaries are aware of
the smart home device type they want to target and passively
monitor. Thus, they can train the system on a similar device
offline, extract its signature, and use it to detect the targeted
device’s signature from the monitored traffic. It is assumed
that the devices encrypt their communication, preventing ad-
versaries from accessing clear-text communication.

B. Architecture

In this paper, we focus on improving the state-of-the-
art work, PINGPONG [28], to automatically and accurately
unveil user activities from smart home network traffic logs.
Our system includes three key stages: i) Input processing, ii)
Training, and iii) Activity detection. In the first stage, we take
necessary annotated inputs, such as a device’s event types and
triggered events. Then, the training stage begins, where we
analyze network traffic, extract features, make a pair of rele-
vant packets, generate signatures using some particular ordered
packet pairs, and cross-validate our generated signatures. In the
final stage, we test our system on independent network traffic
to detect the activities of a given device. In the last two stages,
we use our proposed heuristic. The architecture of our system
is depicted in Figure 1.

1 Input Processing: At first, we take a device’s event types
and trigger events of that type as input. For convenience, we
consider each event type as an integer at the time of training,
as illustrated in Figure 1.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3424299

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, AUGUST 2023 4

Fig. 1. Our System Architecture. At first, a device’s event types and triggered events are taken as input. Then, we collect network traffic, extract features,
and make a pair of relevant packets. After that, we generate signatures that consist of a particular number of ordered sequences of packet pairs. Next, we
validate each event’s signatures. At last, we test our system to detect activity on independent network traffic. In the last two stages, we use our heuristic.

2 Training: We utilize the PINGPONG dataset [28] to gen-
erate and test packet-level signatures. We will also demonstrate
generalizability using other public datasets [3], [14], [27].

Trace Filtering. We filter the collected raw training set (a set
of pcap files and event-based timestamps) to discard unrelated
traffic. We discard the packets where neither the source nor
destination IP matches. Also, the packets beyond a number
of packets, n (a threshold we described later on), after each
timestamped event is discarded.

Pair Clustering. In this step, we separate relevant packet
pairs (i.e., those that consistently occur after an event) from
irrelevant ones. Since we do not know in advance the packet
lengths in pairs, we use an unsupervised learning algorithm,
called DBSCAN [19] that makes clusters of similar data
points, where the similarity is determined by the Euclidean
distance between the points. In this algorithm, we mark some
points as core points if they have a certain amount of points
(amount may be number or percentage) within a particular
distance d from them. If two core points are situated within d
from each other, they will be in the same cluster. Finally, the
non-core points (i.e. leftover points) will join any cluster if that
particular cluster is at most d distance from them. However,
the points without any cluster are treated as noise or outliers
that can be ignored.

Signature Creation. Signatures in this paper are identified
based on only two parameters: packet-length and direction. To
create a signature, we concatenate packet pairs in the clusters
to reassemble the longest packet sequences possible. Packet
pairs in clusters x and y are concatenated if, and only if, for
each packet pair px in x, there exists a packet pair py in y
such that px and py occurred consecutively in the same TCP
connection. If there are more pairs in y than in x, the extra
pairs in y are discarded. Finally, this system sorts the sets of
packet sequences based on the total number of packets to form
a list of packet sequence sets.

Signature Validation. The signatures are validated by run-
ning the detection algorithm at layer 3 using the dataset on
which signatures are created. Suppose the system detects at
most n events, and the timestamps of detected events match the
timestamps for events recorded during training. In that case,
the signature is finalized as a valid packet-level signature.

Heuristic. Heuristic is used in both signature generation
and detection. At first, we find out the number of packets,
ni, of each triggered event within a specific time interval ‘t’
(empirically set to 15 milliseconds). Here, i presents different
instances of the event and i = 1, 2, . . . ,m as the training
dataset generally supports 100 instance per event. Then, we
calculate the geometric mean considering all the ni for a given
event. If an event is triggered m times during the training
phase and the number of packets observed in each instance
is n1, n2, . . . , nm, respectively, then the number of packets
to be considered will be: n = m

√∏m
i=1 ni . Importantly, we

determine the value of n using a controlled setup (lab settings),
where no delay exists. For this reason, this is essentially
dependent on time. But, since our main goal is to apply our
methodology to a real-world scenario, where network traffic
contains unavoidable delays, we use there the same n that
is not dependent on the time frame anymore, irrespective of
datasets and environments. We prove the correctness of our
methodology in Section IV-C2.

We opt for the geometric mean to accommodate unforeseen
fluctuations in the traffic rate. If, instead, we use the arithmetic
mean and the traffic rate experiences extreme fluctuations, the
values of ni for m number of events will vary significantly,
leading to an inappropriate threshold, n. Consequently, this
will result in inaccurate detection.

3 Activity Detection: Detection is done on independent
datasets from which we did not generate signatures. We treat a
network trace as a stream of packets. Each packet is presented
to a set of state machines. A state machine is maintained for
each packet sequence of the signature for each flow, i.e., TCP
connection for the WAN sniffer or layer-2 flow for the Wi-
Fi sniffer (both adversaries have been described in Section
III-A). A state machine advances to its next state if the packet
matches the next packet in the modeled packet sequence. Our
heuristic (i.e., Equation III-B) is used here too.

Signature matching. There are two signature matching
strategies: exact matching and range-based or relaxed match-
ing. In exact matching, only the packets whose lengths exactly
match the packet lengths that were observed during training
are considered to be valid. On the other hand, in range-based
matching, the packet lengths are allowed to lie between a

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3424299

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, AUGUST 2023 5

minimum and maximum packet length (i.e., within a small
delta, ϵ) observed during training. We set ϵ = 10 as existing
work [28]. Now, if the signatures during training are <C-136,
S-780> and <C-700, S-511>, the range-based matching will
consider client-to-server packets with lengths in [126, 710] and
server-to-client packets with lengths in [501, 790] as valid. We
used exact matching when no variations in packet lengths were
observed during training, otherwise, range-based matching is
used. A signature match is searched within n packets (i.e., the
heuristic described in Section III-B).

C. Packet-based Signature Generation and Detection

We develop a new packet-based signature generation and
detection system that relies on the total number of packets
to make signatures and detect activities. Algorithm 1 shows
the corresponding pseudocode for signature generation and
detection of a single event of a given device. At first, we
take all packets (packets) from the pcap file (F), events
supported by a device (E), and the IP address (IP) of a
device as input. Then, we take a list of timestamps (TS) of the
occurred event which is stored as separate files. After that, we
discard the packets where neither the source nor destination
address matches with IP and take the number of packets (ni)
occurring within a specific time-window (twindow) of each
time the event is triggered and calculate the heuristic, nheu,
using equation III-B. Since during training, we determine the
value of nheu in controlled lab settings having no delays in
traffic, it is dependent on time in essence. However, once
we get nheu, any real-time inference is not dependent on
the time frame anymore. We set twindow = 15 milliseconds
so that we can compare our system with PINGPONG [28].
The detailed procedure is described in Section III-B. Next,
we re-iterate the traffic and consider nheu number of packets
per event. Finally, we use the DBSCAN clustering algorithm
to generate clusters (clusters) and concatenate packet pairs
in the clusters to reassemble the longest packet sequences
possible for creating signatures (signatures) of that event.
Finally, we output the signatures into a file. Using these
signatures and nheu, we match signatures and detect activities
in any independent dataset, as described in Section III-B.

D. Handling Multi-type Events

For multi-type IoT devices, such as the TP-Link light bulb
with events ON-OFF-COLOR-INTENSITY, PINGPONG [28]
considers separate events as binary types, and trains and
detects them independently. Thus, if there are n possible types
of events for a device, PINGPONG runs the detection process
at least n/2 times, rather than executing all the events of
the device at a time, which results in additional overhead.
Consequently, if there are total x devices each with n possible
types of events, then the computational overhead will be
O(xn). On the other hand, we improve the system to handle
multi-type events simultaneously. Specifically, in multi-type
detection, we train and detect all events of a specific device in
a single run. As a result, if there are total x devices each with n
possible types of events, then the computational overhead will

Algorithm 1 Generate Packet-based Signatures.
Input

F Pcap file
E Event of the IoT device
IP IP address of the device
TS Timestamp list of when the event occurred

Output
List of Signatures

packets← all packets from F
E ← event name from file
TS ← list from the timestamps file
IP ← ip address from command line argument
n← {}
for each pck ∈ packets do

if pck.src ̸= IP or pck.dest ̸= IP then
packets.remove(pck)

end if
end for
i← 0
for each ts ∈ TS do

Initialize twindow

n[i++]← number of packets in [ts, ts+ twindow]
end for
nheu ← Heuristic(m = |TS|, n)
considered packets← []
for each ts ∈ TS do

considered packets.add(packets(ts, nheu))
end for
signatures← []
clusters← DBSCAN(considered packets)
for each clstr ∈ clusters do

sig ← clstr.packet pairs.concatenate()
signatures.add(sig)

end for
return signatures

be only O(x). Therefore, no additional overhead is required,
and the performance of the system is improved.

Algorithm 2 shows the corresponding pseudocode for de-
tecting multiple types of events. At first, we merge network
traces of all the events of a device into a single pcap file.
Then, we take all packets (packets) from the pcap file
(F), event type list (Evnt), and the IP address (IP) of the
device as input. Next, we take a list of occurred events (E)
with their corresponding timestamp (TS) which were stored
in separate files. After that, we discard the packets where
neither the source nor destination address matches with IP
and take the number of packets (ni) within a specific time-
window (twindow) of when an event (t) occurs and calculate
the heuristic, nheu, using equation III-B. Next, for each type
of event (t), we iterate over all the times that event occurred
(e, ts) and take nheu number of packets. Finally, we use the
DBSCAN clustering algorithm to make clusters (clusters)
and concatenate packet pairs in the clusters to reassemble
the longest packet sequences possible for creating signatures
(signatures) of that event. We output the signatures into a
file. For individual events, we keep separate files. Using these
signatures and nheu, we match signatures and detect activities

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3424299

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, AUGUST 2023 6

Algorithm 2 Handle Multi-type Events.
Input

F Pcap file
Evnt Event type list of IoT device
IP IP address of the device
(E, TS) Tuple list of type of occurred event with

corresponding timestamp
Output

List of Signatures
packets← all packets from F
Evnt← event types file
IP ← ip address from command line argument
(E, TS)← events occurred and timestamps file
n← {}
for each pck ∈ packets do

if pck.src ̸= IP or pck.dest ̸= IP then
packets.remove(pck)

end if
end for
i← 0
for each t ∈ Evnt do

for each (e, ts) ∈ (E, TS) do
Initialize twindow

n[i++]← number of packets in [ts, ts+ twindow]
end for

end for
nheu ← Heuristic(m = |TS|, n)
signaturesList← []
for each t ∈ Evnt do

considered packets← []
for each (e, ts) ∈ (E, TS) do

if e ̸= t then
continue

end if
considered packets.add(packets(ts, nheu))

end for
tempList← []
clusters← DBSCAN(considered packets)
for each clstr ∈ clusters do

signature← clstr.packet pairs.concatenate()
tempList.add(signature)

end for
signaturesList.add(tempList)

end for
return signaturesList

in other independent datasets, as described in Section IV.

IV. EVALUATION

This section provides a concise overview of our approach.
We begin by describing the datasets used for training, testing,
and negative, and positive experiments. Next, we present the
detailed results of our improved methodologies. We evaluate
our system using various performance metrics and compare it
with existing work. Additionally, we assess signature unique-
ness using network traffic from two large independent datasets
and test signature generalizability with another dataset.

A. Dataset

For evaluation, we used data from four public datasets:

• Training and Testing: PINGPONG dataset [28] contains
network traces of 19 different smart home devices with a
total size of around 40 GB. The dataset was collected in
2018 but it also contains updated traces for some of the
devices from 2019. We use this dataset in Section IV-C.

• Negative Control Experiment: A negative control ex-
periment means testing our system on an independent
dataset to observe the uniqueness of our signatures for
uncommon devices.
– UNSW smart home traffic dataset [3] contains network

traces for 26 smart home devices. The dataset is a
collection of 59 pcap files, with a total size of 26.3 GB
and a total of 10,497,761 packets. We use this dataset
in Section IV-D1.

– YourThings smart home traffic dataset [26], [27] con-
tains 1,992 pcap files from 45 smart home devices,
with a total size of approximately 179.9 GB and
282,097,515 packets. We use this dataset in Section
IV-D2.

• Positive Control Experiment: A positive control exper-
iment means testing the generalizability of our signa-
tures using an independent dataset with common devices.
Mon(IoT)r [14] dataset contains network traces for 55
IoT devices, with a total size of around 8.6 GB. We use
this dataset in Section IV-E to compare our signatures
generated in Section IV-C using the PINGPONG dataset
with those generated using this dataset (for only common
devices across the datasets).

B. Examples of Packet-based Signatures

Figure 2 illustrates the observed packet exchanges for three
IoT devices. For the Sengled bulb, the communication is from
the companion app to the cloud. In this case, for an ON event,
the controlling smartphone always sends a request packet of
215 bytes to an Internet host and receives a reply packet of
1275 bytes. For the OFF event, these packet lengths are 217
bytes and 1277 bytes, respectively, and for INTENSITY, 211
bytes, and 1063 bytes, respectively. For an Amazon plug, we
observe an exchange of TLS Application Data packets between
the Amazon plug and an Internet host where the packet lengths
are 1099 bytes and 235 bytes, respectively, when the plug is
ON. For OFF events, we find consistently occurring packet
pairs in the plug’s communication with two different Internet
hosts where the lengths of the reply packets are the same; but
for the requests packets, the lengths are different. Similarly,
for the TP-Link light bulb, we observe that the smartphone
sends a request packet to the device with the same lengths of
packets for both events, and the reply packets from the device
are of lengths 227 and 244 bytes, respectively. Thus, this
request-reply pattern can occur in any communication mode,
such as Phone↔Device, Device↔Cloud, or Phone↔Cloud (as
highlighted in Section II-B).

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3424299

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, AUGUST 2023 7

Sengled bulb Amazon plug TP-Link light bulb

Fig. 2. Packet-level signatures of Sengled bulb, Amazon plug, and TP-Link light bulb observable by a passive network adversary. We can see that unique
traffic patterns are exhibited during the execution of specific device events.

TABLE II
RESULTS OF PACKET-BASED SIGNATURE GENERATION & DETECTION METHODOLOGY, INCLUDING DETECTION RESULTS OF PINGPONG. IN THE

SIGNATURE COLUMN, PREFIXES C, S, PH, AND D INDICATE CLIENT-TO-SERVER, SERVER-TO-CLIENT, PHONE-TO-DEVICE, AND DEVICE-TO-PHONE
DIRECTION, RESPECTIVELY. S1 AND S2 ARE THE SIGNATURE NUMBER IN THE SIGNATURE COLUMN. THIS MEANS THAT THERE ARE TWO SIGNATURES

FOR THAT EVENT OF THE DEVICE.

Device
(Communication) Event Signature TPT* Matching For Ours (Per 100 Events)** For PINGPONG

Validation Detection Validation Detection
Devices with multi-type events

Sengled bulb
(Phone-Cloud)

On C-215 S-1275
Off C-217 S-1277 11 50+50+97=197/200 50+49+96=195/200 192 196
Intensity C-211 S-1063

TP-Link light
bulb
(Phone-Device)

On PH-198 D-227
Off PH-198 D-244
Color PH-317 D-287 45 50+50+100+100=300/300 50+50+100+100=300/300 300 304†
Intensity PH-[240-242] D-[287-289]

Rachio sprinkler
(Device-Cloud)

Quickrun S-267 C-155
Stop C-496 C-155 8 50+50+100=200/200 50+50+100=200/200 200 200
Standby S-299 C-155 C-395Active

Devices with binary type events

Ring alarm
(Device-Cloud)

Arm S1: S-99 S-254 C-99
S2: S-[181-183] C-99 51 49+50=99 50+47=97 98 95

Disarm S1: S-99 S-255 C-99
S2: S-[181-183] C-99

Ecobee
thermostat
(Phone-Cloud)

Fan On C-1387 S-640

Fan Off C-1389 S-640 285 50+50=100 50+50=100 100 99

Roomba robot
(Phone-Cloud)

Clean S1: S-[1014-1015] C-105

87 47+47=94 52+51=103† 91 94S2: S-432 C-105
Back-to-
station

S1: S-440 C-105
S-[1018-1019, 1023-1024] C-105

WeMo plug
(Phone-Device)

On PH-259 PH-475 D-246 30 100 104† 100 100Off
Dlink plug
(Device-Cloud)

On S1: S-91 S-1227 C-784 44 98 96 95 95Off S2: C-1052 S-647

Amazon plug
(Device-Cloud)

On C-1099 S-235

Off S1: C-1179 S-235 87 49+51=100 50+50=100 98 99
S2: C-1514 C-103 S-235

Kwikset
doorlock
(Phone-Cloud)

Lock C-699 S-511

Unlock S1: C-701 S-511 38 50+50=100 54+34=88 100 100
S2: S-647 C-136

Dlink siren
(Phone-Cloud)

On C-1076 S-593 26 50+50=100 51+52=103† 100 98Off C-1023 S-613
SmartThings
plug
(Phone-Cloud)

On C-699 S-511

Off S1: C-700 S-511
S2: S-780 C-136

27 50+50=100 54+41=95 92 92

Nest thermostat
(Phone-Cloud)

Fan On C-[891-894] S-[830-834] 55 50+50=100 58+59=117† 93 94Fan Off C-[858-860] S-[829-834]
WeMo Insight plug
(Phone-Device)

On PH-259 PH-475 D-246 29 100 101† 100 99Off
TP-Link plug
(Device-Cloud)

On C-556 S-1293 69 50+50=100 49+56=105† 99 100Off C-557 S-[1294-1295]

*TPT: Total Packets Taken; **For devices with binary type, 100 events per device. For devices with multi-type events, it varies; † indicates the presence
of false positives.

C. Results using the PINGPONG dataset
We have tested our methodology on 15 IoT devices on

the PINGPONG dataset [28]. Table II depicts the results. For
devices with multi-type events, we merge network traces of all
the events of a device into a single file and use Algorithm 2

as described in Section III-D. For most of the devices, we can
detect signatures for different events. The fourth column shows
the number of packets we have used for signature generation
and detection. The fifth column of the table contains the vali-
dation results conducted on the training dataset, and the sixth

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3424299

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, AUGUST 2023 8

TABLE III
DIFFERENCE IN GENERATED SIGNATURE BY US AND PINGPONG [28]. WE GET SOME NEW SIGNATURES THAT ARE SMALLER IN SIZE (I.E., VARY IN

PACKET LENGTH) OR COMPLETELY DIFFERENT FROM THE SIGNATURES REPORTED BY PINGPONG. THE HIGHLIGHTED PORTIONS OF THE TABLE
INDICATE THE MAJOR DIFFERENCES.

Device*
(Communication)

Event Signature Validation Detection
Ours PINGPONG Ours PINGPONG Ours PINGPONG

Sengled bulb
(Phone-Cloud)

On C-215 S-1275 S1: C-211 S-1063 197 192 195 196
S2: S-1277

Off C-217 S-1277 C-211 S-1063 S-1276
Intensity C-211 S-1063 S-[215-217] S-[1275-1277]

Rachio sprinkler
(Device-Cloud)

Quickrun S-267 C-155 S-267 C-155 200 200 200 200
Stop C-496 C-155 C-496 C-155 C-395
Standby S-299 C-155 C-395 S-299 C-155 C-395Active

Roomba robot
(Phone-Cloud)

Clean S1: S-[1014-1015] C-105 S1: S-[1014-1015] C-105 94 91 103 94
S2: S-432 C-105 S2: S-432 C-105

Back-to-
station

S1: S-440 C-105 S1: S-440 C-105
S-[1018-1019, 1023-1024] C-105 S-[1018-1024] C-105

Amazon plug
(Device-Cloud)

On C-1099 S-235 S1: S-[443-445] 100 98 100 99
S2: C-1099 S-235

Off S1: C-1179 S-235 S1: S-[444-446]
S2: C-1514 C-103 S-235 S2: C-1179 S-235

S3: C-1514 C-103 S-235

SmartThings
plug
(Phone-Cloud)

On C-699 S-511 S1: C-699 S-511 100 92 95 92
S2: S-777 C-136

Off S1: C-700 S-511
S2: S-780 C-136

S1: C-700 S-511
S2: S-780 C-136

*Devices, only for which we get new signatures, are stated here.

column contains the detection results after testing on traffic,
independent of the training and validation phases. Finally,
the last two columns contain corresponding validation and
detection results for PINGPONG. The “TPT (Total Packets
Taken)” depends on individual network traffic, that is the
total number of packets in the pcap file, which varies from
device to device. Though we discard irrelevant packets, we
can not strictly say the “majority” of the packets are deemed
irrelevant and subsequently discarded. In several cases, we
find most of the packets to be irrelevant. On the contrary,
in other cases, the network traffic contains comparatively
fewer packets. Interestingly, we get identical signatures for the
individual events of the WeMo plug, Dlink plug, and WeMo
Insight Plug (possibly these devices share the same software
codebase from the same vendor). Also, for some device events
we obtain different signatures as highlighted using S1 and S2
labels in the table. In the “Matching” results of the last two
columns, we denote the number of detected events of each type
of device by summation. For example, our system detects 50
On, 50 Off, and 97 Intensity events of the Sengled bulb device
in the validation phase. However, the total number of actual
events for the Sengled bulb is 200. Therefore, we mention the
results as “50+50+97=197/200” in the table. For devices with
binary events, since the total number of actual events is 100 per
device in both validation and detection, we skip mentioning
the number of actual events in the table. Similar things go for
the detection column and other devices, except for the three
devices (WeMo plug, Dlink plug, and WeMo Insight Plug),
for which we get identical signatures, we state the number of
detected events together, rather than writing separately.

We next compare our signatures with the ones reported by
PINGPONG [28]. We discover some new signatures for five
devices: Sengled bulb (ON-OFF-INTENSITY), Rachio sprin-
kler (STOP), Roomba robot (BACK-TO-STATION), Amazon
plug (ON-OFF), and SmartThings plug (ON). These new
signatures are either smaller in size (i.e., vary in packet length,

deduct any part of the signature) or completely different from
the signatures stated in PINGPONG [28]. Table III illustrates
a comparison between our system and PINGPONG [28],
only for the devices where we obtain new signatures. For
the Sengled bulb, we get signatures <C-215 S-1275>, <C-
217 S-1277>, and <C-211 S-1063> for the ON, OFF,
and INTENSITY events, respectively, which are completely
different from those reported by PINGPONG [28]. These
new signatures improve the validation rate while keeping the
detection rates almost identical. For Rachio sprinkler’s event
STOP, the signature generated by PINGPONG [28] is <C-
496 C-155 C-395>. In our experiment, C−395 is not present,
and the new signature becomes <C-496 C-155>. Importantly,
this shortened signature does not affect the validation and
detection system, as evident in Table III. The signature in
PINGPONG [28] for the event BACK-TO-STATION for the
Roomba robot is <S-440 C-105 S-[1018-1024] C-105>. On
the contrary, our system generates a smaller signature exclud-
ing S − [1020 − 1022], and again we observe improvement
in both the validation and detection phases. For the Amazon
plug, parts of PINGPONG’s [28] signatures: S − [443− 445]
and S − [444 − 446], for events ON and OFF, respectively,
are not present in our new signatures (see in Table III).
Most importantly, these new signatures prove their correctness
by obtaining perfect matches in the validation and detection
phases (i.e., 100 vs. 98, 100 vs. 99). Finally, for the Smart-
Things plug’s ON event, our system comes up with a single
signature, that is, <C-699 S-511>. On the other hand, the
corresponding existing signatures from PINGPONG [28] are
<C-699 S-511> and <S-777 C-136> (i.e., two signatures).
From Table III, we can see that this new signature can identify
more events compared to PINGPONG [28] (i.e., 100 vs. 92
and 95 vs. 92).

1) Comparisons with PINGPONG: We have compared our
system with the PINGPONG [28] system in terms of signature
duration and detection. The average signature duration for our

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3424299

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, AUGUST 2023 9

TABLE IV
COMPARISON BETWEEN BOTH SYSTEMS ON SIGNATURE DURATION.

Device Duration Avg. (Max., Min.) (ms)
Ours PINGPONG

Sengled bulb 5311 (7171, 3321) 5964.5 (8151.5, 4145.5)
TP-Link bulb 83 (212, 6) 83.3 (212, 6)
Rachio sprinkler 1412 (2538, 276) 1435 (2538, 276)
Ring alarm 410 (605, 275) 410 (605, 275)
Ecobee thermostat 232 (1776, 117) 232 (1776, 117)
Roomba robot 2057 (5418, 123) 2038 (5418, 123)
Wemo plug 42 (134, 33) 42 (134, 33)
Dlink plug 1206 (8060, 823) 1206 (8060, 823)
Amazon plug 686 (1466, 70) 2465 (4537, 1232)
Kwikset doorlock 305 (2361, 136) 395 (2874, 173)
Dlink siren 37 (65, 36) 37 (65, 36)
SmartThings plug 385 (2223, 131) 537 (2223, 335)
Nest thermostat 111 (1072, 91) 111 (1072, 91)
Wemo Insight plug 39 (97, 32) 39 (97, 32)
TP-Link plug 85 (204, 75) 85 (204, 75)

approach across all the devices is 1,141 milliseconds, which
is less than that of PINGPONG (1,499 milliseconds). From
Table IV, we can see that the longest signature in PINGPONG
is 9,132 milliseconds (for Sengled bulb), whereas in our case,
it is 8,060 milliseconds (for Dlink plug). Moreover, our system
improves the minimum and average signature duration time.

For the Sengled bulb, the minimum duration reduces to
3,324 milliseconds from 4,145.5 milliseconds, the average
duration reduces to 5,311 milliseconds from 5,964.5 millisec-
onds, and the maximum duration reduces to 7,171 milliseconds
from 9,132 milliseconds. For the Amazon plug, we observe a
drastic change in signature duration time as minimum, average,
and maximum duration reduced by 1,162 milliseconds (70
vs. 1,232 ms), 1,179 milliseconds (686 vs 2,465 ms), and
3,071 milliseconds (1,466 vs 4,537 ms), respectively. For
the Kwikset doorlock, the minimum duration reduces to 136
milliseconds from 173 milliseconds, the average duration
reduces to 305 milliseconds from 395 milliseconds, and the
maximum duration reduces to 2,361 milliseconds from 2,874
milliseconds. Finally, for the SmartThings plug, minimum
and average signature duration improve (131 vs 335 ms, and
385 vs 537 ms), and maximum duration remains similar to
PINGPONG. For four devices: Sengled bulb, Amazon plug,
Kwikset doorlock, and SmartThings plug, our performance is
much better than PINGPONG. For others, it remains almost
the same.

Moreover, the last four columns of Table II illustrate that
our system always gives better validation results since it can,
most of the time, validate all 100 triggered events. In the case
of detection, it either improves or remains consistent with
the performance of PINGPONG. In our experiments, a true
positive is a case where our system can detect the event that
is actually triggered, a false positive is where there is no event
happening but our system detects as that event occurred, and
a false negative is a case where our system can not detect the
actual triggered event. However, a true negative is not possible
here because there will be nothing to detect if there is no
ongoing event. In any detection system, the target is to get high
true positives and low false negatives. From Table V, we can
see that our system gives more true positives and fewer false
negatives than the existing system since our main goal is to
reduce false negatives and increase true positives, which may

TABLE V
COMPARISON BETWEEN OUR SYSTEM AND PINGPONG. WE ACHIEVE

HIGHER RECALL AND SIMILAR PRECISION RATES.

Metrics Procedures Ours PINGPONG
Total number of Validation 1888 1858
True Positives Detection 1871 1861

Total number of Validation 12 42
False Negatives Detection 29 39

Recall Validation 99.3% 97.4%
Detection 98.5% 97.4%

Precision Validation 100% 100%
Detection 98.3% 99%

result in a few false positive events as a side effect. Besides, we
get a higher recall score which indicates that we can detect
more events than others. Additionally, the precision of both
systems is almost similar. Therefore, the results of Tables V
and IV indicate that our system outperforms PINGPONG in
the signature generation, and detection process.
Takeaway. PINGPONG [28] employs a time window-based
signature generation and detection strategy, considering all
packets within a specific time-window. However, this ap-
proach’s drawback lies in its sensitivity to traffic rate fluctua-
tions, leading to variations in validation and detection phases.
This is especially problematic during network congestion, as
fewer packets may be available for signature detection in such
periods. To address these limitations, we have introduced a
packet-count-based approach (Section III-B), which mitigates
the impact of temporal fluctuations and network congestion.
Moreover, this approach remains unaffected by higher-than-
usual traffic rates, ensuring accurate signature detection.

2) Experiment on Real World Settings: In the real world,
network traffic usually experiences random delays up to 500
ms, even 700 ms [16], [33]. Therefore, to better justify our
methodology and prove our claim, we create a dataset by
injecting random delays in the PINGPONG dataset [28] and
test both systems on the new dataset. Specifically, we inject
delays of different ranges, for example [0-100] ms, [100-200]
ms, [200-300] ms, [300-400] ms, and [400-500] ms varying the
frequency of the delays, such as after every 2, 5, 7, 10, 25, 50,
75, and 100 packets. For every experiment, at first, we select
a delay range, let [0-100] ms. Then, we randomly choose a
delay from that range every time, keeping the frequency of the
delays static for that experiment. After that, we repeat the same
experiment 10 times (rounds), and finally, we take the average
of the detection results. Similarly, we conduct experiments
changing the frequency for that delay range. As a result, in
total, there are 5*7*10=350 experiments per device. Figure 3
shows the comparison results on precision, recall, and f1-score
metrics. We see that PINGPONG predicts few true positive
events, but misses many of them (resulting in too many false
negative events). Thus, in most cases, there are near 0 false
positives. Consequently, recall and accuracy of PINGPONG
drastically decrease to 14.7% and 25.6%, respectively, as
the more frequent delays increase. Additionally, precision
becomes almost 100 since there are a negligible number of
false positives. On the other hand, the precision, recall, and
f1-score of our system remain stable at 98.3%, 98.5%, and
98.4%, respectively, which means the system is not affected
by the delays at all.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3424299

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, AUGUST 2023 10

[0
-1

0
0
]

[1
0
0
-2

0
0
]

[2
0
0
-3

0
0
]

[3
0
0
-4

0
0
]

[4
0
0
-5

0
0
]

Delay (ms)

1
0

0
7

5
5

0
2

5
1

0
5

2

F
re

q
u
e
n
c
y
 o

f
d
e
la

y
 i
n
je

c
ti

o
n
s

98.3 98.3 98.3 98.3 98.3

98.3 98.3 98.3 98.3 98.3

98.3 98.3 98.3 98.3 98.3

98.3 98.3 98.3 98.3 98.3

98.3 98.3 98.3 98.3 98.3

98.3 98.3 98.3 98.3 98.3

98.3 98.3 98.3 98.3 98.3

Precision (ours)

[0
-1

0
0
]

[1
0
0
-2

0
0
]

[2
0
0
-3

0
0
]

[3
0
0
-4

0
0
]

[4
0
0
-5

0
0
]

Delay (ms)

99.5 99.9 99.9 99.9 99.9

99.7 99.9 99.9 99.9 99.9

99.6 99.9 99.9 99.9 99.9

99.9 99.9 99.9 99.9 99.9

99.8 99.9 100.0 100.0 100.0

99.6 100.0 100.0 100.0 100.0

100.0 100.0 100.0 100.0 100.0

Precision (pingpong)

[0
-1

0
0
]

[1
0
0
-2

0
0
]

[2
0
0
-3

0
0
]

[3
0
0
-4

0
0
]

[4
0
0
-5

0
0
]

Delay (ms)

98.5 98.5 98.5 98.5 98.5

98.5 98.5 98.5 98.5 98.5

98.5 98.5 98.5 98.5 98.5

98.5 98.5 98.5 98.5 98.5

98.5 98.5 98.5 98.5 98.5

98.5 98.5 98.5 98.5 98.5

98.5 98.5 98.5 98.5 98.5

Recall (ours)

[0
-1

0
0
]

[1
0
0
-2

0
0
]

[2
0
0
-3

0
0
]

[3
0
0
-4

0
0
]

[4
0
0
-5

0
0
]

Delay (ms)

97.8 95.8 94.2 92.6 92.0

97.7 94.4 92.3 90.2 89.8

97.1 92.2 88.9 86.3 85.1

95.3 86.2 81.1 76.7 74.0

90.8 66.9 58.5 54.8 52.5

82.2 51.3 44.8 37.3 32.4

53.6 34.2 24.3 19.0 14.7

Recall (pingpong)

[0
-1

0
0
]

[1
0
0
-2

0
0
]

[2
0
0
-3

0
0
]

[3
0
0
-4

0
0
]

[4
0
0
-5

0
0
]

Delay (ms)

98.4 98.4 98.4 98.4 98.4

98.4 98.4 98.4 98.4 98.4

98.4 98.4 98.4 98.4 98.4

98.4 98.4 98.4 98.4 98.4

98.4 98.4 98.4 98.4 98.4

98.4 98.4 98.4 98.4 98.4

98.4 98.4 98.4 98.4 98.4

F1 score (ours)

[0
-1

0
0
]

[1
0
0
-2

0
0
]

[2
0
0
-3

0
0
]

[3
0
0
-4

0
0
]

[4
0
0
-5

0
0
]

Delay (ms)

98.7 97.8 97.0 96.1 95.8

98.7 97.1 96.0 94.8 94.6

98.3 95.9 94.1 92.6 91.9

97.5 92.5 89.5 86.8 85.0

95.1 80.1 73.8 70.8 68.9

90.1 67.8 61.9 54.4 49.0

69.8 51.0 39.1 31.9 25.6

F1 score (pingpong)

20

30

40

50

60

70

80

90

100

Fig. 3. In real-world comparisons, our system maintains stable performance metrics. In contrast, PINGPONG experiences a notable decrease in recall and
F1-score, while precision remains unaffected. This suggests that while PINGPONG accurately detects true events, it misses a significant number of them.

D. Negative Control Experiments
1) Using UNSW Dataset: UNSW dataset [3] contains net-

work traces of 26 IoT devices. We evaluate the uniqueness
of the signatures generated for 15 IoT devices by performing
signature detection on the UNSW dataset [3]. As there is no
common devices between UNSW and the 15 IoT devices for
which we have generated signatures, all the detected events
will be considered false positives. We get a total 90 false
positive events across a total of 10,497,761 packets.

2) Using YourThings Dataset: YourThings dataset [27]
contains network traces of 45 IoT devices. We have tested
our system on the YourThings dataset, which includes 1,992
pcap files over seven days. As there are three common
devices (WeMo plug, Roomba robot, and TP-Link light bulb)
present in both the YourThings dataset and our training-testing
dataset, we only performed signature detection for 12 of our
devices that are not present in the YourThings dataset to avoid
the potential for true positives. We get here only 258 false
positives across a total of 282,097,515 packets.
Takeaway. In the two negative control experiments, we ob-
serve an average of 1 false positive per 0.117 million packets in
the UNSW dataset and an average of 1 false positive per 1.09
million packets in the YourThings dataset. These false positives
occur due to the range-based or relaxed matching strategy
employed by our system. This strategy considers a match even
if the packet lengths in independent traffic are close to the
exact lengths observed during training. The detailed strategy
is explained in Section III-B.

E. Positive Control Experiment using Mon(IoT)r Dataset
In this Section, we apply our methodology to the publicly

available Mon(IoT)r [14] dataset. We compare the signatures
extracted from the Mon(IoT)r dataset to those extracted from
the PINGPONG [28] dataset for the devices present in both
datasets. There are five common devices: WeMo Insight plug,
Blink camera, TP-Link plug, Sengled bulb, and TP-Link
light bulb. Since Mon(IoT)r dataset was collected in 2019,
we use the secondary dataset that PINGPONG collected for
the common devices in 2019. Thus, we repeat the signature
extraction for the dataset collected in 2019 for these devices
to facilitate a better comparison of signatures.

Table VI highlights the signatures for the common devices
across the two independent datasets. We can see that the signa-
tures for the three devices changed. For the WeMo Insight plug
and Blink camera, the extracted signatures from the PING-
PONG (2019) dataset and the Mon(IoT)r dataset are identical.
The signatures for the TP-Link plug and Sengled bulb remain
almost the same across these two datasets. The packet lengths
slightly differ in some positions by a few bytes. For example,
in the PINGPONG dataset, the TP-Link plug’s OFF signature
is <C-593 S-[1235-1236] S-100>, which changes to <C-
606 S-[1214-1215] S-100> in Mon(IoT)r dataset. A similar
thing goes for the Sengled bulb. We could not obtain an
updated network trace from the PINGPONG dataset for the
TP-Link light bulb. Thus, we used the previous version.
Overall, signatures across these two datasets do not exactly
match, but they are still closer.

Another interesting insight is the temporal stability of
signatures. Comparing Table II with Table VI, we can see that
the signature changed for two of the devices across a 2-year
time span. For example, the WeMo Insight plug’s signature
no longer contains PH − 259, and S − 100 is added to the
TP-Link plug’s signature.
Takeaway. We observed in the positive control experiment
that some signatures change over time, probably due to the
configuration changes, communication protocol introduced in
firmware updates, or other credentials. This evolution can
result in introducing false negative events as the signatures
will not match the ones that were observed during training.
To overcome this situation, we need to update our signatures
periodically. The best thing is to repeat the training process to
extract the latest signatures of a device right before launching
the detection process.

V. DISCUSSION

Our system demonstrates high accuracy in revealing IoT
device activities from real smart home network traffic logs.
The experimental evaluations, covering a diverse range of IoT
devices, show an average recall of 98-99% and an average
precision of 98-100%. We identify new packet-level signatures
and validate their uniqueness by performing detection on
independent datasets, resulting in negligible false positives.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3424299

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, AUGUST 2023 11

TABLE VI
COMMON DEVICES IN THE MON(IOT)R AND PINGPONG DATASETS. WE SEE MINIMAL CHANGES ACROSS THE DATASETS, IF ANY.

Device Event Signature TPT † Duration (ms)
Min./Avg./Max./St. Dev.

WeMo Insight plug
(Phone-Device)

On/Off *S1: PH-475 D-246 139 29 / 33 / 112 / 8.51
**S1: PH-475 D-246 313 31 / 42 / 111 / 14.97

Blink camera
(Device-Cloud)

Watch *S1: C-331 S-229 C-139 635 267 / 273 / 331 / 8.35
**S1: C-331 S-229 C-139 71 170 / 269 / 289 / 17.57

Photo *S1: C-331 C-123 S-139 S-123 S-187 C-1467 96 281 / 645 / 1299 / 345
**S1: C-331 C-123 S-139 S-123 S-187 C-1467 44 266 / 1307 / 11146 / 2232.5

TP-Link plug
(Device-Cloud)

On *S1: C-592 S-[1234-1235] S-100 61 70 / 73 / 85 / 2.2Off *S1: C-593 S-[1235-1236] S-100
On **S1: C-605S-[1213-1214] S-100 69 10 / 77 / 189 / 40.85Off **S1: C-606 S-[1214-1215] S-100

Sengled bulb
(Device-Cloud)

On/Off *S1: S-[216-218] C-[208-210] 10 3251 / 4657 / 6118 / 862.57*S2: C-430

On
**S1: S-219 C-210

17 354 / 2592 / 3836 / 861.39
**S2: C-428

**S3: C-[478-479]

Off
**S1: S-219 C-210

**S2: C-428
**S3: C-[479-480]

TP-Link light bulb
(Phone-Device)

On *S1: PH-198 D-227 88 8 / 77 / 148 / 42.2Off *S1: PH-198 D-244
On **S1: PH-258 D-227 79 3905 / 6685 / 8071 / 389.7Off **S1: PH-258 D-244

*Signature: Training on PINGPONG [28]; **Signature: Training on Mon(IoT)r [14]; †TPT: Total Packets Taken.

Furthermore, the generated signatures exhibit good generaliz-
ability within the same time frame, although firmware updates
can impact the final signature.

Our system has a few limitations. First, the proposed
methodology can only be applied to the TCP protocol, not
to the UDP protocol, which we plan to explore in the future.
Besides, we observe a few false positives as a side effect of
reducing false negatives while maximizing true positives.

Strategies to prevent general traffic analysis, like website
fingerprinting defenses [20], can mitigate our signature detec-
tion system. These include using VPNs, traffic padding, and
shaping techniques, which aim to obscure traffic patterns and
connection details. However, they often introduce significant
bandwidth and latency overheads, challenging the real-time
nature of IoT devices. Other approaches involve injecting
adversarial noise into traffic [29] or splitting traffic across
multiple networks [8], albeit with practical limitations. A
promising approach akin to ‘k-anonymity’ could group traffic
based on network usage by IoT devices while preserving
usability. Implementation and evaluation of such methods for
IoT devices remain avenues for future research.

VI. CONCLUSION

This paper introduces a packet-based signature generation
and detection system for effectively detecting user activities of
diverse IoT devices, encompassing single, binary, and multi-
type events, using packet-level signatures extracted from both
encrypted and unencrypted network traffic. By overcoming the
time-window dependency limitations of existing systems, we
demonstrate the system’s superiority and correctness through
experimental results in real-world datasets. The uniqueness
and accuracy of our generated signatures are validated using
publicly available datasets, yielding satisfactory outcomes.

REFERENCES

[1] A. Acar et al., “Peek-a-Boo: I see your smart home activities, even
encrypted! ,” in 13th ACM Conference on Security and Privacy in Wire-
less and Mobile Networks (WiSec ’20), Linz (Virtual Event), Austria,
Jul. 2020.

[2] A. Sivanathan et al., “Characterizing and classifying IoT traffic in smart
cities and campuses,” 2017 IEEE Conference on Computer Communi-
cations Workshops (INFOCOM WKSHPS), pp. 559–564, 2017.

[3] A. Sivanathan et al., “Classifying IoT devices in smart environments
using network traffic characteristics,” IEEE Transactions on Mobile
Computing, vol. 18, pp. 1745–1759, Aug. 2018.

[4] D. Ahmed, A. Das, and F. Zaffar, “Analyzing the Feasibility and Gen-
eralizability of Fingerprinting Internet of Things Devices,” Proceedings
on Privacy Enhancing Technologies, vol. 2022, no. 2, mar 2022.

[5] Andriy Panchenko et al., “Website fingerprinting at internet scale,” in
Network and Distributed System Security Symposium, 2016.

[6] Bogdan Copos, Karl N. Levitt, Matt Bishop and Jeff Rowe, “Is anybody
home? Inferring activity from smart home network traffic,” 2016 IEEE
Security and Privacy Workshops (SPW), pp. 245–251, 2016.

[7] DataFlair Team, “How IoT works-4 main components of IoT system,”
https://data-flair.training/blogs/how-iot-works/.

[8] W. De la Cadena, A. Mitseva, J. Hiller, J. Pennekamp, S. Reuter, J. Filter,
T. Engel, K. Wehrle, and A. Panchenko, “Trafficsliver: Fighting website
fingerprinting attacks with traffic splitting,” in Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security, 2020,
pp. 1971–1985.

[9] Gunes Acar et al., “FPDetective: dusting the web for fingerprinters,”
in Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security, Nov. 2013, p. 1129–1140.

[10] I. Hafeez, A. Y. Ding, M. Antikainen, and S. Tarkoma, “Real-time iot
device activity detection in edge networks,” in International Conference
on Network and System Security, 2018, pp. 221–236.

[11] Hafeez, I., Antikainen, M., Ding, A. Y., and Tarkoma, S., “IoT-KEEPER:
detecting malicious IoT network activity using online traffic analysis at
the edge,” IEEE Transactions on Network and Service Management, vol.
17(1), pp. 45–59, Jan. 2020.

[12] Jamie Hayes and George Danezis, “k-fingerprinting: a robust scalable
website fingerprinting technique,” in USENIX Security Symposium,
2015.

[13] Y. Jin, E. Sharafuddin, and Z.-L. Zhang, “Unveiling core network-
wide communication patterns through application traffic activity graph
decomposition,” ACM SIGMETRICS Performance Evaluation Review,
vol. 37, no. 1, pp. 49–60, 2009.

[14] Jingjing Ren et al., “Information exposure for consumer IoT devices: a
multidimensional, network-informed measurement approach,” in Inter-
net Measurement Conference (IMC), 2019.

[15] Jingjing Ren et al., “Information exposure from consumer IoT devices: a
multidimensional, network-informed measurement approach,” Proceed-
ings of the Internet Measurement Conference, 2019.

[16] J. Li, T. Zhang, J. Jin, Y. Yang, D. Yuan, and L. Gao, “Latency
estimation for fog-based internet of things,” 2017 27th International
Telecommunication Networks and Applications Conference (ITNAC), pp.
1–6, 2017.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3424299

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, AUGUST 2023 12

[17] Manuel Lopez-Martin, Belén Carro, Antonio J. Sánchez-Esguevillas, and
Jaime Lloret, “Network traffic classifier With convolutional and recurrent
neural networks for internet of things,” IEEE Access, vol. 5, pp. 18 042–
18 050, 2017.

[18] Markus Miettinen et al., “Iot sentinel: automated device-type identifi-
cation for security enforcement in iot,” 2017 IEEE 37th International
Conference on Distributed Computing Systems (ICDCS), pp. 2177–2184,
2016.

[19] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu,
“A density-based algorithm for discovering clusters in large spatial
databases with noise,” in Knowledge Discovery and Data Mining, 1996.

[20] N. Mathews, J. K. Holland, S. E. Oh, M. S. Rahman, N. Hopper, and
M. Wright, “Sok: A critical evaluation of efficient website fingerprinting
defenses,” in IEEE Symposium on Security and Privacy (S&P). IEEE
Computer Society, 2023, pp. 344–361.

[21] T. T. T. Nguyen and G. J. Armitage, “A survey of techniques for internet
traffic classification using machine learning,” IEEE Communications
Surveys & Tutorials, vol. 10, pp. 56–76, 2008.

[22] Noah J. Apthorpe, Danny Yuxing Huang, Dillon Reisman, Arvind
Narayanan, and Nick Feamster, “Keeping the smart home private with
smart(er) IoT traffic shaping,” Proceedings on Privacy Enhancing Tech-
nologies, vol. 2019, pp. 128–148, 2018.

[23] Noah J. Apthorpe, Dillon Reisman, and Nick Feamster, “A smart home
is no castle: privacy vulnerabilities of encrypted IoT traffic,” ArXiv, vol.
abs/1705.06805, 2017.

[24] Noah J. Apthorpe, Dillon Reisman, and Nick Feamster, “Closing the
blinds: four strategies for protecting smart home privacy from network
observers,” ArXiv, vol. abs/1705.06809, 2017.

[25] Noah J. Apthorpe, Dillon Reisman, Srikanth Sundaresan, Arvind
Narayanan, and Nick Feamster, “Spying on the smart home: privacy at-
tacks and defenses on encrypted IoT traffic,” ArXiv, vol. abs/1708.05044,
2017.

[26] O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose, “Yourthings
scorecard,” https://yourthings.info/.

[27] O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose, “SoK: security
evaluation of home-based IoT deployments,” in EEE Symposium of
Security & Privacy, San Francisco, CA, USA, May 2019.

[28] Rahmadi Trimananda, Janus Varmarken, Athina Markopoulou, and Brian
Demsky, “Packet-level signatures for smart home devices ,” in Network
and Distributed Systems Security (NDSS) Symposium, San Diego, CA,
USA, Feb. 2020.

[29] M. S. Rahman, M. Imani, N. Mathews, and M. Wright, “Mocking-
bird: Defending Against Deep-Learning-Based Website Fingerprinting
Attacks With Adversarial Traces,” IEEE Transactions on Information
Forensics and Security, vol. 16, pp. 1594–1609, 2021.

[30] Roberto Perdisci, Thomas Papastergiou, Omar Alrawi, and Manos An-
tonakakis, “IoTFinder: efficient large-scale identification of IoT devices
via passive DNS traffic analysis,” 2020 IEEE European Symposium on
Security and Privacy (EuroS&P), pp. 474–489, 2020.

[31] Roberto Perdisci, Wenke Lee and Nick Feamster, “Behavioral clustering
of HTTP-based malware and signature generation using malicious
network traces,” in Symposium on Networked Systems Design and
Implementation, 2010.

[32] Rohan Doshi, Noah J. Apthorpe, and Nick Feamster, “Machine learning
DDoS detection for consumer Internet of Things devices,” 2018 IEEE
Security and Privacy Workshops (SPW), pp. 29–35, 2018.

[33] A. S and S. M. D. Kumar, “Delay estimation of healthcare applications
based on mqtt protocol: A node-red implementation,” 2022 IEEE In-
ternational Conference on Electronics, Computing and Communication
Technologies (CONECCT), pp. 1–6, 2022.

[34] Samuel Marchal, Markus Miettinen, Thien Duc Nguyen, Ahmad-Reza
Sadeghi, and N. Asokan, “Audi: toward autonomous iot device-type
identification using periodic communication,” IEEE Journal on Selected
Areas in Communications, vol. 37, pp. 1402–1412, 2019.

[35] Somayya Madakam, R Ramaswamy, and Siddharth Tripathi, “Internet
of Things (IoT): A Literature Review,” Journal of Computer and
Communications, vol. 3, pp. 164–173, Dec. 2022.

[36] Subahi, Anoud, Theodorakopoulos, and George, “Detecting IoT user
behavior and sensitive information in encrypted IoT-app traffic,” Sensors
(Basel, Switzerland), vol. 19, 11 2019.

[37] T. OConnor et al., “HomeSnitch: behavior transparency and control for
smart home IoT devices,” in 12th Conference on Security and Privacy
in Wireless and Mobile Networks, (WiSec ’19), Miami, FL, USA, Jul.
2019.

[38] Z. Berkay Celik et al., “Sensitive information tracking in commodity
IoT,” in 27th USENIX Conference on Security Symposium, Baltimore,
MD, USA, Aug. 2018.

Mohammad Shamim Ahsan received a B.S. de-
gree in Computer Science and Engineering from
Bangladesh University of Engineering and Technol-
ogy (BUET) in 2023. Currently, he is a Lecturer in
the Computer Science and Engineering (CSE) De-
partment at United International University, Dhaka,
Bangladesh. He will start his Ph.D. in Fall’24 at
the IST department of Pennsylvania State University,
USA. His research interests are in Cybersecurity and
Privacy, focusing on IoT security, computer security,
web security, and social aspects of security. Apart

from this, he is continuously serving society as a peer-reviewer in several
well-known journals.

Md. Shariful Islam has a B.Sc. degree in Com-
puter Science and Engineering from Bangladesh
University of Engineering and Technology (BUET),
Dhaka, Bangladesh (2023). Currently, he works as a
Software Engineer at Enosis Solutions, Bangladesh,
while seeking Ph.D. opportunities starting Fall ’25.
He possesses experience in IoT security and has
participated in Computer Security competitions like
Capture the Flag. His research interests encompass
IoT security, cryptography, web security, and net-
work security.

Md Shohrab Hossain (Member, IEEE) received his
B.Sc. and M.Sc. in Computer Science and Engi-
neering from Bangladesh University of Engineering
and Technology (BUET), Dhaka, Bangladesh in the
year 2003 and 2007, respectively. He obtained his
Ph.D. degree from the School of Computer Science
at the University of Oklahoma, Norman, OK, USA
in December 2012. During his PhD, he worked
under NASA-funded projects related to survivability,
scalability, and security of space networks. He is
currently serving as a Professor in the Department of

Computer Science and Engineering at Bangladesh University of Engineering
and Technology (BUET), Dhaka, Bangladesh. His research interests include
Cyber Security, Mobile malware detections, Software-defined networking
(SDN), security of mobile and ad hoc networks, and the Internet of Things.
He has published more than 90 technical research papers in leading journals
and conferences including the Journal of Computers & Security, Ad Hoc
Networks, IEEE Access, Journal of Network and Computer Applications,
IEEE Trans. of Mobile Computing, Wireless Personal Communication, PLOS
ONE, IEEE GLOBECOM, IEEE ICC, IEEE MILCOM, IEEE WCNC, IEEE
HPCC, etc.

Anupam Das (Senior Member, IEEE) received a
B.S. and M.S. degree in Computer Science and Engi-
neering from Bangladesh University of Engineering
and Technology, Dhaka, Bangladesh, in 2008 and
2010, respectively, and a Ph.D. degree in Computer
Science from the University of Illinois at Urbana-
Champaign (UIUC), Illinois, USA in 2016. He was
a recipient of a Fulbright Science and Technology
fellowship during his Ph.D. degree. He was also
a postdoctoral fellow in the School of Computer
Science at Carnegie Mellon University (CMU) from

2016 to 2018. He is currently an Assistant professor in the Computer Science
Department at North Carolina State University (NCSU), Raleigh, North
Carolina, USA. His research interests lie in security and privacy, with a
special focus on designing secure and privacy-preserving technologies. He
has published more than 60 technical research papers in leading journals and
conferences. He has been awarded more than U.S. $2.5 million in research
grants from the U.S. National Science Foundation (NSF), NCSU, Meta,
and Amazon. He has also received two ACM Distinguished Paper Awards
(ASIACCS 2014, MMSys 2017). His projects have been covered by media
outlets such as Wired, Forbes, ZDNet, MotherBoard, and FastCompany.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3424299

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

	Introduction
	Background and Related Work
	Key Components of IoT-based System
	Data Communication Model for IoT
	Related Works

	Proposed Approach
	Threat Model
	Architecture
	Packet-based Signature Generation and Detection
	Handling Multi-type Events

	Evaluation
	Dataset
	Examples of Packet-based Signatures
	Results using the PINGPONG dataset
	Comparisons with PINGPONG
	Experiment on Real World Settings

	Negative Control Experiments
	Using UNSW Dataset
	Using YourThings Dataset

	Positive Control Experiment using Mon(IoT)r Dataset

	Discussion
	Conclusion
	References
	Biographies
	Mohammad Shamim Ahsan
	Md. Shariful Islam
	Md Shohrab Hossain
	Anupam Das

