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ABSTRACT
The use of voice-control technology has become mainstream and
is growing worldwide. While voice assistants provide convenience
through automation and control of home appliances, the open na-
ture of the voice channel makes voice assistants difficult to secure.
As a result voice assistants have been shown to be vulnerable to re-
play attacks, impersonation attacks and inaudible voice commands.
Existing defenses do not provide a practical solution as they either
rely on external hardware (e.g., motion sensors) or work under
very constrained settings (e.g., holding the device close to a user’s
mouth). We introduce the concept of using a gesture-based authen-
tication system for smart home voice assistants called HandLock,
which uses built-in microphones and speakers to generate and
sense inaudible acoustic signals to detect the presence of a known
(i.e., authorized) hand gesture. Our proposed approach can act as a
second-factor authentication (2-FA) for performing specific sensitive
operations like confirming online purchases through voice assis-
tants. Through extensive experiments involving 45 participants, we
show that HandLock can achieve on average 96.51% true-positive-
rate (TPR) at the expense of 0.82% false-acceptance-rate (FAR). We
perform a comprehensive analysis of HandLock under various set-
tings to showcase its accuracy, stability, resilience to attacks, and
usability. Our analysis shows that HandLock can not only success-
fully thwart impersonation attacks, but can do so while incurring
very low overheads and is compatible with modern voice assistants.

CCS CONCEPTS
• Security and privacy→ Usability in security and privacy.
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1 INTRODUCTION
Voice-based computer interaction thrives on the ability to enable
users to interact with devices and services through voice instead of
keystrokes, mouse-movements or swipes. While speech recognition
has been an active field of research for many years, it has seen wide-
spread adoption in recent years, especially with the deployment of
smart home voice assistants (VAs) like Amazon Echo and Google
Home. These VAs enable consumers to not only listen to music
and flash briefings, but also control other smart home appliances.
However, the widespread use of VAs also gives rise to both security
and privacy concerns due to their always-listening capability [35]
and susceptibility to audio-based attacks [32, 43, 56]. According to
Edison Research, 63% of VA owners in the USA are concerned that
hackers might gain access to their home or personal information
through VAs [3].

One of the major security concerns with current VAs is the lim-
ited support for authentication. Other than simple customizable
wake words like “Alexa” or “Hi, Google,” there is not much sup-
port for authentication in VAs. VAs do provide the capability to
recognize different users based on their voice profiles, however,
such approach has been shown to be vulnerable to simple replay
attacks [31, 53]. Other features include using voice-based PIN codes
to restrict sensitive operations like voice-based online order. Again,
the PIN code has to be spoken out loud and is susceptible to passive
eavesdropping.

In recent years, several studies have proposed authenticating
users through microphones and speakers embedded in smart de-
vices [16, 34, 60]. BreathPrint [16] proposes utilizing the breathing
sound made by a user to uniquely identify the user. BiLock [60]
extracts biometric signatures from the sounds generated by a user’s
dental occlusion, captured through the built-in microphone of a
smartphone. Lippass [34] leverages unique Doppler profiles of
acoustic signals generated by a user’s moving lips to authenticate
the user. However, all of these schemes require the sensing device
(i.e., microphones or speakers) either to be placed very close to
the user’s mouth or held by the user, which does not amount to a
practical solution for smart home VAs.

In this paper, we introduce a hand-gesture based biometric au-
thentication scheme called HandLock that can recognize an autho-
rized user based on his/her hand movement. To this end, HandLock
emits inaudible acoustic signals and records the reflected signals to
identify a user. The underlying hypothesis for HandLock is that it
is possible to distinguish different users even if they perform the same
hand gesture due to their differing physical biometrics. Specifically,
as shown in the Figure 1, since the length of ulna and humerus of a
given user is fixed, the starting and ending positions of the hand
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Figure 1: Anatomy of the human arm and hand.

stay the same no matter how fast the user moves the hand. There-
fore, the speed profile of a given gesture from the same user should
remain similar as the speeds of different parts of the hand and limb
change, proportionally. We study the validity of this hypothesis
through a comprehensive measurement study. Theoretically, the
phase change that appears in the received acoustic signal is directly
proportional to the speed at which a human hand was moved while
performing a gesture. By combining our hypothesis with this theo-
retical result, we make the following observation: the phase shift
recorded on the received acoustic signal is significantly different
for different users, even if they all perform the same hand gesture.

HandLock, therefore, first emits inaudible acoustic signals during
the authentication phase and simultaneously records audio signal
through a microphone. After the user performs a hand gesture,
HandLock extracts the phase of the received signal as a time-series
data using signal processing techniques. Next, this time-series phase
data is converted into a time series of speed and acceleration. The
last step involves computing statistical features in the temporal and
spectral domain to differentiate users via a machine learning model.
We evaluate our approach by recruiting a total of 45 participants.We
evaluate our approach under various settings, including multi-user
enrollment, long-term stability and adversarial attempts. Through
our evaluations we see that our approach can be used not only to
determine the physical presence of a user, but also as an effective
second-factor authentication method for VAs.

There are several technical challenges in building an acoustic
sensing system to differentiate an individual’s hand gesture. First,
the time series of acoustical phase introduced by the hand is noisy
mixing with ambient noise, DC offset (caused by microphone imper-
fection), and multi-path propagation (impacted by human body and
surrounding environment). To tackle these challenges, we propose
a new Quadrature-based (Q-based) phase extraction approach to
remove the background noise, DC offset and multi-path propaga-
tion. Next, we need to select meaningful features to recognize a
predefined gesture performed by different users. Lastly, as gestures
can be performed at different speeds, we need to account for the
change in speed to make all hand speeds consistent for each user.
In summary, we make the following contributions:
• We introduce the idea of using gesture-based authentication
mechanism for VAs, using built-in microphones and speakers.
Our proposed approach can act as a second-factor authenti-
cation (2-FA) for sensitive operations such as making online

purchases through VAs. To the best of our knowledge, we are the
first to propose such a 2-FA system for VAs without requiring
additional hardware.

• We design and implement HandLock using a commercial off-
the-shelf (COTS) speaker (ReSpeaker Core v2.0 [8]). We also
develop signal-processing techniques that are capable of extract-
ing acoustical phase change caused by hand movements from
raw acoustic signals. We, furthermore, develop machine learn-
ing models that can effectively identify users based on temporal
and spectral features derived from the extracted time-series
data representing gesture speed and acceleration.

• We evaluate our approach by recruiting 45 participants and
by collecting over 15,000 samples that cover five different ges-
tures. Our results show that HandLock can achieve on average
96.51% TPR. With three attempts, HandLock can achieve a TPR
of 99.91%. We also evaluate our system under both benign and
adversarial settings. Lastly, we thoroughly perform various sen-
sitivity analysis to showcase the effectiveness of our proposed
authentication system.
The remainder of this paper proceeds as follows. Section 2 pro-

vides background and describes related work. In Section 3, we
present the detailed design of HandLock. Section 4 presents the
comprehensive evaluation of our proposed authentication system.
We analyze the usability of our approach in Section 5. We list the
limitations of our approach in Section 6. Finally, we conclude in
Section 7.

2 RELATEDWORK
Biometric authentication has been an active field of research for a
long time. Voice and facial recognition have been at the forefront of
such authentication systems. In this work, we look at recognizing
hand gestures through acoustic signals for authenticating voice-
assistant users. In this section, wewill highlight some of the relevant
works in this field.
Voice-based Authentication. Voice-based authentication sys-
tems leverage unique human voice characteristics to recognize
a user [36]. These voice biometrics include voice based features
such as pronunciation, accent, speech speed, as well as physical
characteristics of vocal tract, mouth and nasal passages. However,
studies show that voice authentications are vulnerable to imper-
sonation [28, 29] and replay attacks [31, 53]. Kinnunen et al. [31]
reported that the EER of voice authentication systems can increase
anywhere from 1.76% to 31.46% under replay attacks. Researchers
have shown that it is easy to launch both black box (i.e., inverse
MFCC) [14, 20, 49] and white box (i.e., gradient descent) [45] at-
tacks against speech recognition systems. Recent works such as
DolphinAttack [56], BackDoor [42], CommanderSong [54], Sire-
nAttack [24] and LipRead [43] have shown that voice assistants are
vulnerable to inaudible voice commands which are incomprehen-
sible to human ear, but can be understood by speech recognition
systems. Even voice processing systems such as Google, Bing, IBM
and Azure speech APIs have been shown to be susceptible to hidden
voice commands [11].

Many schemes have been proposed to defend against replay
attacks that perform liveliness tests [19, 51, 57, 58], but such ap-
proaches are often not feasible for VAs. For instance, VocieLive [58]
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captures the time-difference-of-arrival (TDoA) dynamics of an ut-
tered passphrase to determine liveliness of an audio source. Voice-
pop [51] leverages the breathing noise to detect both replay and
impersonation attacks. However, both of these approaches require
the user to speak very closely to the microphone (in the range of
2–6 cm), which is feasible for authenticating one on a smartphone,
but not realistic for VAs.
Gesture-based Authentication. Body gesture is another biomet-
ric that has been utilized to uniquely identify users. A body of stud-
ies have been conducted to authenticate users on mobile phones
and wearable IoT devices, leveraging embedded or wearable sen-
sors [25, 33] and WiFi signals [32, 37, 40, 46]. VAuth [25] collects
the body-surface vibrations of the user via a wearable motion sen-
sor and correlates the data with the speech signal recorded by the
voice assistant’s microphone to achieve continuous authentication.
VSButton [32] utilizes the motion time-series data extracted from
wristband to secure IoT devices. However, these schemes depend
on external sensing hardware, and thus are not readily applicable
to VAs. Recent studies [37, 40, 46] have shown that existing WiFi
signals can be utilized for authentication in smart homes. WiID [46]
extracts speed time-series features from WiFi Channel State Infor-
mation (CSI) to infer 7 gestures such as circular armmotion, waving
arm motion and kicking to identify users. REVOLT [40] leverages
the WiFi and voice features to detect human presence and speaking
to counter replay attacks. While sensing gestures via wireless sig-
nals has the advantages of being device-free and unobtrusive, there
are two main drawbacks: 1) CSI logging requires special hardware
such as an USRP or an special WiFi card (e.g., Inter 5300 NIC), and
2) accuracy can significantly degrade in environments with moving
objects (e.g., pets moving) or when the position of the transceiver
changes.
Acoustic Sensing. Many acoustic-based gesture recognition sys-
tems have been proposed to recognize in-air gestures [18, 27, 39, 44,
48]. SoundWave [27], AudioGest [44], and MultiWave [39] all char-
acterize the Doppler effect to sense motion gestures. EchoTrack [18]
uses two speakers and one microphone in smartphones to track
hand motion. Strata [55] estimates the channel impulse response
(CIR) induced by acoustical multi-path to track fine-grained finger
gestures. FingerIO [38] uses OFDM modulated sound frames and
enables 2-D finger tracking based on the change of the echo profiles
of two consecutive frames. LLAP [52] uses Continuous Wave (CW)
signal to track a moving target based on the phase information of
the reflected signal. VSkin [48] characterizes the propagation of
structure-borne and air-borne acoustic signals to recognize gestures
performed on the back of mobile devices.

Recently, several acoustic signal based authentication systems
have been proposed for smartphones [16, 34, 60]. BreathPrint [16]
captures the breathing sound made by a user through an embedded
microphone in close proximity to the user’s nose to perform biomet-
ric authentication. BiLock [60] extracts signatures from the sounds
generated by a user’s occlusion activities which are recorded by the
built-in microphone of a smartphone or a smartwatch placed close
to the user’s lips to achieve biometric authentication. Lippass [34]
proposes a lip reading-based user authentication on smartphones
utilizing unique Doppler profiles of acoustic signals introduced
by lip movement while speaking. SpeakPrint [21] extracts MFCC

Table 1: Comparison with existing works.

Method TPR FAR Extra Hardware Device Free
WiID [46] 92.80% - WiFi transceiver Yes
VAuth [25] ≤97% 0.10% Wearable No
P2Auth [33] ≤99.55% 2.1% Wearable No
HandLock 96.51% 0.82% No Yes

features in normal voice frequency and calculates mouth move-
ment speed derived from ultrasound signal to authenticate users.
EarEcho [26] takes advantages of the unique physical and geomet-
rical characteristics of human ear canal to authenticate users using
inaudible signals. However, all of these schemes require users to
hold the device in close proximity (within a few centimeters) of the
microphones to perform authentication.
Distinction with Prior Work. To the best of our knowledge, we
are the first to propose an acoustic hand gesture based 2-FA system
for VAs. Our approach is device-free and non-obtrusive. As we will
later on show our approach is able to not only thwart emulation
attempts by an attacker, but can also allow multiple users in a
household to enroll with different gestures. Table 1 highlights a
comparison with other existing VA authentication systems. Hand-
Lock achieves similar effectiveness when compared with existing
approaches. However, unlike other approaches HandLock does not
require any additional hardware and operates device free. Thus,
our approach is fully compatible with existing VAs.

3 SYSTEM DESIGN
3.1 System Overview
The key principal of HandLock is to derive the unique hand ges-
ture fingerprint of an individual by analyzing the acoustics signals
bouncing off from the individual’s hand when he/she is making
a gesture. Once the received acoustic signal is prepossessed it is
then compared with known fingerprints of authorized users to
complete the verification step. Figure 2 shows an overview of our
proposed system, which consists of five main components: signal
sensing, signal processing, feature extraction, user modeling, and
verification.

In the signal sensing phase, as soon as the VA enters a sensitive
operation (i.e., operations that a user wants to limit by an 2-FA
approach), such as confirming an online purchase, the embedded
speaker of the VA device prompts the user to perform a hand gesture
and starts emitting inaudible continuous wave (CW) signal. The
microphone array on the VA simultaneously starts recording the
inaudible sound as the user performs a gesture over the VA. In the
signal processing phase, the received signal (RF) is first multiplied
with the transmitted signal cos 2𝜋 𝑓 𝑡 and its phase-shift version
− sin 2𝜋 𝑓 𝑡 . We then use a low pass filter to get the corresponding,
In-phase (I) and Quadrature (Q) signals. Given that we can extract
the acoustic phase shift from the Q signal which is less susceptible
to noise (as we will show in Section 3.3.2), we use the Q trace
alone to extract features. Next, we extract the phase shift from Q
trace and divide phase signals into small segments that contain the
hand movements. These signal segments are then passed through
a feature extraction process, where HandLock uses an automated
feature engineering process to select the top distinguishing features
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Figure 2: System overview. There are five major components: ultrasonic sensing, signal processing, feature extraction, user
modeling, and verification.

across different users. Next, we use these features to train machine
learning (ML) classifiers for different settings, like single-user or
multi-user authentication. Lastly, HandLock uses the developed ML
classifier to distinguish a known user from a set of unknown users.
We provide more details of each step below.

3.2 Signal Sensing
In designing the signal sensing process, where HandLock emits
audio signals we considered two factors: user experience and sys-
tem performance. To make our system unobtrusive, the acoustic
signal emitted by the VA is made inaudible. Therefore, HandLock
uses sound waves with frequencies higher than 16 kHz, which are
inaudible to most people and supported by Commercial-Off-The-
Shelf (COTS) voice assistant devices. We transmit and record audio
signals at 48 kHz. Next, to improve acoustic sensing capability, we
use multiple carrier frequencies of inaudible signal of𝐴 cos 2𝜋 𝑓 𝑡 to
improve phase detection. A gesture usually takes 1.5 ∼ 3 seconds
and the hand trace moves up to 1 meter during this time, so the
hand speed (𝑣) is up to 0.67 m/s. The frequency shift caused by a
hand movement can be measured at the microphone (𝑓𝑟 ) using the
following equations.

𝑓𝑟 = 𝑓0
𝑐 + 𝑣

𝑐 − 𝑣
(1)

Δ𝑓 = 𝑓𝑟 − 𝑓0 (2)

The Doppler shift can be simplified as Δ𝑓 = 2𝑣 𝑓0/𝑐 , where 𝑐 is the
sound speed in air and 𝑓0 is the original transmitted frequency from
the speaker, thus Δ𝑓 = 2 ∗ 0.67 ∗ 20000/343 ≈ 78𝐻𝑧, when the
source frequency is 20kHz. To ensure there is no interference of
Doppler shifts caused by two source signals of varying frequencies,
we use a frequency interval of 400 Hz. Figure 3 illustrated the
recorded signal when we use 16 different source frequencies with
an interval of 400 Hz, i.e., source frequencies = {𝑓 : 𝑓 = 16000 +
400𝑖, 𝑖 = 0, 1, ..., 15}. We sum and normalize the 16-frequency signals
as 𝐴

∑22000
𝑓 =16000 cos 2𝜋 𝑓 𝑡 . The sound pressure was observed to be 80

dB when the signal amplitude 𝐴 is set to 1. To reduce the loudness
of the emitted signal to 50 dB, we set 𝐴 to 0.5.

3.3 Signal Processing
Recorded acoustic signals are processed in three steps as shown in
Figure 2. We provide the details of these steps here.

3.3.1 Signal I/Q Modulation. A transmitted signal arrives at the
microphone frommultiple paths including the structure-borne path

Figure 3: Received signal at 16 different frequencies.

Figure 4: I/Q modulation process.

via the body of the device, the Line-Of-Sight (LOS) propagation path
via the air, and other reflection paths by surrounding objects (e.g.,
the user’s body, the table where the device seats). Let us assume
the phase of the source signal (𝐴 cos 2𝜋 𝑓 𝑡 ) changes by 𝛿 due to the
Doppler effect caused by a hand movement. Let 2𝜋 𝑓 𝐷 (𝑡)/𝑐 repre-
sents the phase delay (i.e., impact of multi-path) caused by the prop-
agation delay of𝐷 (𝑡)/𝑐 , where 𝑐 is the speed of sound. The recorded
inaudible signal will then be 𝐴′ cos (2𝜋 𝑓 𝑡 + 2𝜋 𝑓 𝐷 (𝑡)/𝑐 + 𝛿). Let 𝜙
represents phase shift 2𝜋 𝑓 𝐷 (𝑡 )

𝑐 + 𝛿 , then the received signal can be
simplified using the equation shown below:

𝐴′ cos (2𝜋 𝑓 𝑡 + 𝜙) = 𝐴′(cos 2𝜋 𝑓 𝑡 cos𝜙 − sin 2𝜋 𝑓 𝑡 sin𝜙) (3)

This equation (i.e., Eq. 3) can further be simplified by substituting
the in-phase (𝐼 = 𝐴′ cos𝜙) and quadrature (𝑄 = 𝐴′ sin𝜙) compo-
nents of the signal as shown below:

𝐴′ cos (2𝜋 𝑓 𝑡 + 𝜙) = 𝐼 cos 2𝜋 𝑓 𝑡 −𝑄 sin 2𝜋 𝑓 𝑡 (4)

The general pipeline to derive 𝐼 and𝑄 signals is shown in Figure 4.
The received signal is first multiplied with the transmitted signal
cos 2𝜋 𝑓 𝑡 and its phase-shifted version − sin 2𝜋 𝑓 𝑡 . We then use a
low pass filter (LPF) to filter out frequencies greater than 24 kHz
(i.e., maximum possible frequency at 48 kHz sampling rate) and get
the corresponding desired 𝐼 and 𝑄 traces.

𝐼 = 𝐿𝑃𝐹 (2𝐴′ cos (2𝜋 𝑓 𝑡 + 𝜙)𝑐𝑜𝑠 (2𝜋 𝑓 𝑡)) = 𝐴′ cos𝜙 (5)
4
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𝑄 = 𝐿𝑃𝐹 (−2𝐴′ cos (2𝜋 𝑓 𝑡 + 𝜙)𝑠𝑖𝑛(2𝜋 𝑓 𝑡)) = 𝐴′ sin𝜙 (6)

Figure 5: Corresponding I/Q signal when performing a ‘Z’
gesture.

3.3.2 Phase Extraction. Acoustic signal recorded by a microphone
typically includes ambient noise such as human voice or environ-
mental noise. Our data collection process took place in a lab envi-
ronment that emulated a smart home living room. Hence, various
smart home devices such as desktop computers, smart TVs, motion
sensors and smart cameras were all present in the room while data
was being collected. Also, some of the participants spoke while per-
forming hand gestures. As we discussed in Section 3.2, the Doppler
shift caused by hand movement is below 100Hz. We use a third-
order Butter-worth low-pass filter [4] with a stop frequency at 100
Hz to remove undesired high-frequency noises of the modulated
I/Q signal, caused by human speech and ambient noise. The fil-
tered signal is then down sampled by a factor of 100 to reduce the
system computational overhead, that is, the sampling frequency is
decreased from 48 kHz to 480 Hz. Figure 5 shows the corresponding
I/Q signals after the denoising and down-sampling process when a
user is performing a ‘𝑍 ’ gesture.

However, due to hardware imperfections, the center of the recorded
signal is not around 0. Figure 6 shows the offset present in I and Q
trace, where 𝐼𝐷𝐶=0.01 and 𝑄𝐷𝐶=-0.01, respectively. Thus, I and Q
can be written as 𝐼 = 𝐼𝐷𝐶 +𝐴′ cos𝜙 and 𝑄 = 𝑄𝐷𝐶 +𝐴′ sin𝜙 .
Limitations of prior works. Figure 7 highlights a short time
series of IQ trace. Prior works [23, 59] approximates phase (𝜙) by
considering small arcs (�𝑃𝑖𝑃𝑖+1) formed by two neighbouring IQ
points in a circle. Specifically, the chord length (𝐶ℎ𝑜𝑟𝑑𝑖 ) is propor-
tional to the angle formed by an arc when it is very small. The
length of chord between two neighbouring IQ points is calculated
as: �𝑃𝑖𝑃𝑖+1 = √

(𝐼𝑖+1 − 𝐼𝑖 )2 + (𝑄𝑖+1 −𝑄𝑖 )2

= 2𝑅 sin(𝜙𝑖/2) ≈ 𝑅𝜙𝑖

(7)

where R is the radius of the circle IQ points form, and 𝜙 is the
central angle of the corresponding chord.

Using Taylor’s series we know, sin𝜙 =
∑∞
𝑛=0

(−1)−𝑛
(2𝑛+1)!𝜙

2𝑛+1 =

𝜙− 𝜙3

3! + .... Thus, sin𝜙 ≈ 𝜙 , when𝜙 is small. Assuming 𝑅 is constant
in a given short time, Δ𝐶ℎ𝑜𝑟𝑑𝑖 ≈ 𝑅(𝜙𝑖+1 − 𝜙𝑖 ) as shown in Eq. 8,
which is proportional to the phase change. We call this process
Chord-based phase extraction. However, as shown in Figure 5 and
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Figure 6: I/Q signal with DC offset caused by hardware im-
perfections.
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Figure 8: Phase change based on Chord-based and Q-based
approach. Q-based approach does not require approximat-
ing the value of 𝑅.

Figure 7, 𝑅 changes dramatically within one gesture signal, which
causes an inaccurate approximation of phase change if we consider
𝑅 to be constant.

Δ𝐶ℎ𝑜𝑟𝑑𝑖 = ∥ �𝑃𝑖+1𝑃𝑖+2 − �𝑃𝑖𝑃𝑖+1∥ = ∥𝑅(𝜙𝑖+1 − 𝜙𝑖 )∥ (8)

𝑄𝑖+1 −𝑄𝑖 = 𝑄𝐷𝐶 +𝐴′ sin𝜙𝑖+1 − (𝑄𝐷𝐶 +𝐴′ sin𝜙𝑖 )

= 𝐴′(𝜙𝑖+1 − 𝜙𝑖 −
𝜙3
𝑖+1
3!

+
𝜙3
𝑖

3!
) = 𝐴′(𝜙𝑖+1 − 𝜙𝑖 )

= 𝐴′( 2𝜋 𝑓 𝐷 (𝑡)
𝑐

+ 𝛿𝑖+1 −
2𝜋 𝑓 𝐷 (𝑡)

𝑐
− 𝛿𝑖 )

= 𝐴′(𝛿𝑖+1 − 𝛿𝑖 )

(9)

Our approach. As 𝑄 = 𝐴′ sin𝜙 , the phase shift can be extracted
from the 𝑄 trace alone as shown in the Eq. 9. Our approach is not
dependent on approximating the value of 𝑅, and at the same time
removes the DC offset and reduces the impact of multi-path propa-
gation (eliminating both 𝑄𝐷𝐶 and 2𝜋 𝑓 𝐷 (𝑡 )

𝑐 ). Figure 8 contrasts the
Chord-based and our Q-based approach of approximating phase
change. In our approach, phase change can, therefore, be repre-
sented by 𝜃𝑖 = ∥𝛿𝑖+1 − 𝛿𝑖 ∥ = ∥(𝑄𝑖+1 −𝑄𝑖 )/𝐴′∥. As 𝐴′ is constant,
𝜃𝑖 is proportional to ∥𝑄𝑖+1 −𝑄𝑖 ∥.
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(b) Detecting the start and end of gesture

Figure 9: Detection of the start and end point of a hand ges-
ture within a signal.

3.3.3 Signal Segmentation. After phase extraction, we need to de-
tect the start and end of a hand gesture to properly extract signal
features. This means we need to find segments within the signal
that represents hand gestures. Empirically, we found that the signal
phase remains close to zero in the absence of any hand movement,
whereas it is deterministically non-zero in the presence of hand
movements as shown in Figure 9b. Consequently, the coefficient of
variation (𝑐𝑣 ) for any signal value is much smaller in the absence
of hand movements than in the presence of hand movements. We,
therefore, select a threshold𝑇 on the coefficient of variation of 𝜃𝑖 to
detect the start and end of a gesture. HandLock first calculates the
coefficient of variation of phase change, 𝜃𝑖 . After experimenting
with different sliding windows, we consider a sliding window of
size 200 with a step size of 10. This results in a series of coefficients
of variation, where we use the moving average of 20 consecutive
values to reduce the impact of outliers. We found 𝑐𝑣 ≥ 0.15 in the
presence of hand movement. Thus, we set 𝑇 = 0.15 to locate the
start and end of a gesture movement. Figure 9a shows the 𝑐𝑣 of
𝜃𝑖 for two consecutive 𝑍 gestures and Figure 9b shows the corre-
sponding phase change for the two gestures with the start (marked
as red triangle) and end (marked as blue rectangle) points marked.

3.4 Feature Extraction
The Doppler shift can be simplified as Δ𝑓 = 2𝑣 𝑓0/𝑐 as discussed in
Section 3.2. The hand speed is proportional to the relative phase
change 𝜃𝑖 , which can be derived from Eq. 9. Therefore, we consider
𝜃𝑖 as the relative speed of the hand movement. As the amplitude
𝐴′ is constant, we weighted two acceleration readings to calculate
the average acceleration.

𝐴𝑐𝑐𝑖 =
𝜃𝑖+1 − 𝜃𝑖 + 𝜃𝑖+2−𝜃𝑖

2
2

(10)

Dealing with Varying Speed. Figure 10 plots the duration of
performing ‘Z’ gestures by five users. Each box plot includes 60
samples. As we can see, different users take different amounts of
time to complete the gestures. Even the same user takes different
amounts of time to complete a gesture (as evident from the box
plot). We must therefore handle the changes in speed from the
same user. HandLock employs resampling so that each identified
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Figure 10: The distribution of duration for performing the
‘Z’ gesture for five users.

gesture segment contains the same number of sample points. Given
a gesture segment containing𝑀 data points, HandLock upsamples
the 𝜃𝑖 to𝑁 points if𝑀 < 𝑁 , while it downsamples the 𝜃𝑖 to𝑁 points
if 𝑀 > 𝑁 . Specifically, we apply Antialiasing Lowpass Filter [6]
to resample 𝜃𝑖 to fixed size of 𝑁 (=1000) samples as the average
duration for a gesture in our dataset was around 2 seconds (with a
sample frequency of 480 Hz, we set 𝑁 to 1000 samples). Next, we
multiply the time-series data with 𝑀

𝑁
to normalize the value of 𝜃𝑖 .

Thus, all gesture instances are represented by the same number of
samples and are also scaled accordingly. Figure 11 illustrates the
speed profiles of two users performing the 𝑍 gesture. We can see
that the phase profiles are properly scaled/normalized. Similarly, we
calculate the acceleration profile from phase change using Eq. 10.
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Figure 11: Speed profiles of different users performing the
‘Z’ gesture. Different colors represent gestures performed at
different timestamp.

We observed that the phase/speed profiles of a given gesture
from the same user are similar, but different from other users as
shown in Figure 11. A user often performs a gesture at different
speed and acceleration. To extract features, HandLock needs to
further segment each speed and acceleration time-series data into
multiple smaller chunks to capture the subtle idiosyncrasies in
which the speed and acceleration changes for a given user.
Feature Vector. Table 2 lists the features we used. We extract
temporal and spectral features from both the speed and acceleration
time series. First, we compute 8 single-valued features for both
speed and acceleration including Mean, Median, RMS, STD, MAD,
10th percentile, 90th percentile, and median frequency. To gain more
fine-grained insights into the change in speed and acceleration, we
split each gesture segment into 20 equal sized chunks and calculate
RMS, STD, MAD and Mean from each chuck. To extract the spectral
features like PSD from speed and acceleration, we apply FFT on each
time-series data, then performmax-min normalization on the power
of all frequencies. Onward, we segment the PSD values into 20 small
chunks and calculate the mean value from each chunk. Similarly,
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Table 2: Explored temporal and spectral features.

Domain Feature Description

Time

Mean Arithmetic mean of signal strength
Median Arithmetic median of the signal strength
RMS Root mean of the squares of the signal strength
STD Standard deviation of the signal strength
MAD Mean absolute deviation of the signal strength
10 th percentile 10th percentile value of the signal strength
90 th percentile 90th percentile value of the signal strength
Auto-correlation Correlation of a signal with a delayed copy of itself

Frequency Median Frequency Median frequency value of the signal
PSD Power spectral density of the signal

we compute the signal auto-correlation coefficient of speed and
acceleration, and normalize the auto-correlation coefficient; we then
segment the normalized coefficient into 20 chunks and compute
the mean value from each chunk. In total, we extract 256 features
from both the speed and acceleration time-series data.1

3.5 User Modeling
HandLock adopts a supervised machine learning approach, there-
fore, users need to provide gestures as training data. Let us assume
the number of enrolled users in a household is U. Each enrolled
user is labeled differently and is a member of the positive class set
UP .HandLock comes with a set of negative samples from unknown
users (e.g., five users) represented as UN . HandLock supports two
forms of enrollment of multiple users (1 ≤ N ≤ U) under two
different scenarios: 1) enrollment of Multiple Users Same Gesture
(MUSG), and 2) enrollment of Multiple Users Multiple Gestures
(MUMG).
Single-user vs. Multi-user Setting. When the user first enrolls
his/her gesture, HandLock prompts for gesture options through the
voice interface and the user provides samples of a given gesture for
training. Multiple users can enroll with a gesture, where gestures
can be of the same or different type. This multi-user setting is
considered as a multi-class classification problem.
Feature Selection. To find the best feature for HandLock, we ex-
plore all the features using the FEAST toolbox [5, 13] and select the
Joint Mutual Information criterion (JMI) for ranking the features.
Balanced Learning. HandLock uses gesture samples from un-
known users as samples from the negative class. If we assume each
user provides 𝑘 (e.g., 20) samples for a given gesture then UP is
the minority class while UN is the majority class (as we assume
samples from five unknown users). The dataset size is imbalanced
due to unequal size of UP and UN . Therefore, we need to up
sample the authentic user’s data to achieve equal class represen-
tation. We test Synthetic Minority Over-sampling (SMOTE) [17]
and Adaptive Synthetic Sampling (ADASYN) [30] methods which
are two popular up-sampling approaches. We selected ADASYN as
our up-sampling approach as it provided better performance. The
results are available in Section 4.1.2.

1Per time-series data we compute (8 + 20 × 4 + 20 + 20) = 128 features.

3.6 Verification
Once we have features extracted from the hand gesture, we use
supervised learning to identify the legitimate user. HandLock col-
lects training data from the authorized user to build one binary or
multi-class classification model. We explore four classifiers includ-
ing Random Forest (RF), Decision Tree (DT), k-nearest neighbors
(KNN), and Support Vector Machine (SVM).
Threat Model and Attack Settings. Our threat model assumes
that an adversary can interact with the victim’s VA. The attacker
then attempts to bypass HandLock by performing a hand gesture.
We consider three settings, where the adversary either knows or
does not know the victim’s chosen gesture. Therefore, we consider
the following attacks.

• Random Gestures: The attacker does not know the exact gesture
performed by the victim, but attempts to authenticate him-
self/herself by performing a random gesture.

• Gesture Mimicry: The attacker knows the exact gesture per-
formed by the victim, for example, by observing the victim
perform a gesture during an authentication session.

• Replay Attack: The attacker places a nearby microphone to
record the exact gesture performed by the victim and attempts
to authenticate by replaying the recorded signal.

4 EVALUATION
In this section, we perform a comprehensive analysis of HandLock
under various settings to evaluate its accuracy, stability, resiliency
to attacks, and system-level performance. First, we evaluate the
overall accuracy and efficiency of our system (Section 4.1), cov-
ering five gestures as shown in the Figure 13. We then examine
its resilience against random gesture mimicry and replay attacks
(Section 4.2). Next, we evaluate the sensitivity of our system (Sec-
tion 4.3) by analyzing the impact of the following factors: number
of users enrolled (Section 4.3.1), number of microphones used (Sec-
tion 4.3.2), temporal stability (Section 4.3.3), distance between hand
and VA (Section 4.3.4), Cross-environment stability (Section 4.3.6),
and ambient noise (Section 4.3.5). Lastly, we evaluate system-level
performance metrics like processing time and memory consump-
tion in Section 4.4.
Device Setup. As current commercial VAs are not allowed to log
raw audio, we implement HandLock using a Seeed’s ReSpeaker
Core V2.0 [8], which runs on GNU/Linux operating system and is
designed for voice interface applications with a quad-core ARM
Cortex A7, running up to 1.5GHz with 1GB RAM. Figure 12a shows
the device setup of HandLock. The board is equipped with a six
microphone array — similar to how microphones are distributed in-
side an Amazon Echo Dot [1]. We wire it to an external 3W speaker
AS07104PO-LW152-R [41]. We use a 3D-printed casing to hold the
microphone array and speaker. The device is powered by a 10000
mAh Mi Power Bank 2 [7]. We play Continuous Wave sound and
record the 6-channel audio simultaneously when collecting gesture
data. Participants were invited to interact with our prototype VA
located inside a lab space that emulates a smart home living room
equipped with a table, sofa, desktop computer, smart TV, smart
lights, motion sensors and smart cameras. Figure 12b shows the lab
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Figure 12: We used Seeed’s ReSpeaker Core V2.0 [8], which
is equipped with six microphones. Lab setup showing how
participants interacted with our prototype VA.

Table 3: Demographics of participants.

Attribute Values (count)

Age 18-24 (6), 25-34 (27), 35-44 (11), 55-64 (1)
Gender Male (21), Female (24)

Education High school graduate (2), Bachelor’s Degree (17),
Master’s Degree (16), Doctorate Degree (10)

Student Yes (28), No (17)
VAs owned 0 (23), 1 (17), 2 (1), 3 (1), more than 3 (3)

setting where a participant is performing a hand gesture with our
VA system.
Participants. We obtained necessary IRB approval to collect data
from participants. The total participation time was around 45 min-
utes (providing breaks between sessions). Participants were com-
pensated ($15) for their time. Table 3 summarizes the participant
details. In total, we recruited 45 participants, 21 identified them-
selves as males, while 24 identified themselves as females. Around
73.33 % (33/45) of participants were aged between 18 and 34. A ma-
jority, 95.56 % (43/45) of them reported to have earned a bachelor
or higher educational degree, and 62.22 % (28/45) of participants
were current students in a university, while the remaining partici-
pants were not students. 48.89 % participants reported owning one
or more smart home voice assistant (VA) devices such as Google
Home, Amazon Echo, or Xiaomi.
Data Collection Process. The data was collected in our lab from
January, 2020 to March, 2020.2 Before collecting any data, each
participant was trained for 5 minutes, so that he/she understood
how the data collection process works. We randomly split the 45
participants into 39 benign users (U) and 6 attackers (A). For
evaluation purposes we consider five popular gestures: ‘𝑍 ’, ‘𝑊 ’, ‘𝑋 ’,
‘✓’ and ‘9’ (as shown in Figure 13). We asked each participant to
continuously perform a given gesture with a small pause between
two subsequent gestures, where participants placed their hand
anywhere in the range of 5 ∼ 30 𝑐𝑚 from our prototype VA. We
found that each participant typically performed 10 ∼ 20 gestures in
a single minute. In order to make our data collection process more
realistic, we asked the participants to take a rest and walk around
after each one-minute data collection session. We then repeat the
whole process until we get the required number of samples.
2We followed COVID-19 safety protocols mandated by our IRB office.

(a) Z (b) W (d) Check Mark (e) Star(c) X

Figure 13: Different types of gestures evaluated.

Table 4: Summary of the various datasets collected.

Dataset Participants Gestures Samples/gesture Total samples

1∗ 39 5 60 39 × 5 × 60=11700
2† 10 5 30 10 × 5 × 30 × 2=3000
3‡ 10 30 1 10 × 30 × 1=300
4⋄ 6 5 30 6 × 5 × 30=900
∗ performed in a single day; † collected after one week and one
month; ‡ random gestures; ⋄ attacker emulates vicitm’s gesture

Datasets. We summarize the collected datasets in Table 4. In
Dataset 1, for each user, we collected 60 samples for each of the five
gestures illustrated in Figure 13. Dataset 2 is collected for evaluating
system stability (Section 4.3.3) — 10 out of the 39 participants were
requested to come back to the lab and provide new data. They came
back one week and one month after their first visit. Dataset 3 is
used to evaluate random gesture attacks, where we asked another
10 out of the 39 users to perform 30 random gestures, which in-
cluded the numbers from 0 to 9 and the alphabets from 𝐴 to 𝑇 . In
Dataset 4, six other participants were asked to take the role of an
attacker and observe how a given victim makes a gesture. Each
attacker observed a victim perform (through recorded video) the
five different gestures and was asked to emulate each of the gestures
30 times. Note that participants performing additional tasks were
compensated accordingly.

In addition to providing hand-gesture data, each participant was
also asked to complete a post-study survey to provide feedback
about their experience with our system and expectations for a
commercial deployment. We provide more details on the post-study
survey in Section 5.
Evaluation Metrics. For any decision made by a classifier, there
are four possible contingencies: (1) accept a legitimate user (true
positive or TP), (2) wrongly accept an illegitimate user (false positive
or FP), (3) reject an illegitimate user (true negative or TN), and
(4) reject a legitimate user (false negative or FN). We adopt the
following well-known metrics that are typically used for assessing
any authentication system [47]: a) False Reject Rate (𝐹𝑅𝑅 = 𝐹𝑁

𝐹𝑁+𝑇𝑃 )
is the probability that the system wrongly identifies a legitimate
user; b) False Accept Rate (𝐹𝐴𝑅 = 𝐹𝑃

𝐹𝑃+𝑇𝑁 ) is the likelihood that
the system wrongly accepts an illegitimate user; c) Precision (𝑃𝑟 =
𝑇𝑃

𝑇𝑃+𝐹𝑃 ) refers to as positive predictive rate; d) Recall (𝑅𝑒 = 𝑇𝑃
𝐹𝑁+𝑇𝑃 )

refers to as the true positive rate (TPR) or sensitivity; e) F-Score
(𝐹1 =

2×𝑃𝑟×𝑅𝑒
𝑃𝑟+𝑅𝑒 ) is the harmonic mean of the precision and recall.

We perform 10 runs and report the average values.

4.1 Overall Accuracy
We use Dataset 1 to evaluate the overall performance. We consider
data from all the six microphones (as shown in the Figure 12a)
for our evaluation. We will evaluate the impact of the number of
microphones used in Section 4.3.2.
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Figure 14: F-Score of different classifiers. RF has the best av-
erage F-score across all five gestures.

4.1.1 Different Classifiers. To build a binary classification model,
we randomly select 30 samples out of the 60 samples per gesture
from each user as training set and use the remaining 30 samples as
test set. We randomly label 5 users’ data as negative class and 34
users’ data as positive class. We use all the features in the feature
vector to train our model. For each binary classification model, we
have 30 positive instances and 30×5 negative instances as training
set. We use the remaining 30 positive instances and select six ran-
dom negative instances from the remaining 30 instances from each
user in the negative class (i.e., five users) as test set. We rerun 10
times for each user and calculate the average F-Score for 34 users.

We compare the performance of four classifiers including RF, DT,
SVM and kNN. For the RF classifier, we use the Bagging algorithm
and test different numbers of trees ranging from 60 to 240, and select
the best number as 120. For DT, we select the maximum number
of splits as 7. To generate each single binary classification model
in SVM, we use the implementation of SVDE with 10-fold cross
validation in libSVM [15] and chose the best complexity parameter
for Radial Basis Function (RBF) through grid Search. To select the
number of neighbors for kNN, we run tests with 𝑘 ranging from
1 to 10 and find the best performance when 𝑘=5. Figure 14 shows
the F-Score of the four classifiers covering five gestures. RF had the
best average F-score across the different gestures. We, therefore,
will use RF for the rest of our evaluations.

4.1.2 Imbalanced data vs. Balanced data. In Section 3.5, we dis-
cussed the challenges that a class imbalance might impose. We test
two widely used upsampling algorithms including SMOTE [17] and
ADASYN [30]. ADASYN shows a better performance than SMOTE
on our dataset. We, therefore, adopt ADASYN to upsample the
positive class instances. Table 5 presents the overall performance
of HandLock while using RF with and without upsampling. After
balancing the positive class, the FRR decreased from 5.49% to 3.49%
and F-Score improved from 96.62% to 97.77%, while the average
FAR decreased from 1.14% to 0.82%.

4.1.3 Varying Training Features. To evaluate the impact of the
number of top features, we apply ADASYN to resample each 30
positive instances. We then use the feature selection library named
FEAST toolbox [5] and use the Joint Mutual Information criterion
(JMI) to determine the top features. We next vary the number of
top features from 300 to 1200 in increments of 60 and compute
the F-Score. We repeat the experiment 10 times for each subset of
the top features, while considering data from all 34 participants

Table 5: Performance of RF classifier with imbal-
anced/balanced dataset (using ADASYN upsampling
technique).

Gesture FRR FAR Precision Recall F-Score

𝑍 4.86/3.71 1.35/0.76 98.62/99.26 95.14/96.29 96.85/97.69
𝑊 6.19/3.14 1.05/1.05 98.90/98.95 93.81/96.86 96.29/97.83
𝑋 4.95/4.10 2.14/1.90 97.84/98.17 95.05/95.90 96.43/96.90
✓ 6.10/3.14 0.96/0.29 99.00/99.70 93.90/96.86 96.3898.22
9 5.33/3.33 0.19/0.10 99.80/99.91 94.67/96.67 97.17/98.20

Avg. 5.49/3.49 1.14/0.82 99.82/99.20 94.51/96.51 96.62/97.77
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Figure 15: Impact of the number of top training features. Us-
ing the top 960 gives us the best performance.

performing the five different gestures. Figure 15 shows that the
average F-Score for different number of top features. The results
improve from 96.97% to 97.67% as we expand the number of top
features from 300 to 960. After that, F-Score seems to plateau. We,
therefore, use the top 960 features as our training features for the
reminder of the evaluations.

4.1.4 Varying Training Size. To make HandLock user friendly, the
enrollment effort for a new user is a critical factor. We consider the
performance of the classifiers in the presence of limited training
samples. For this experiment, we vary the training set size from
10 samples to 40 samples in increments of 5 samples, and test the
remaining samples. For each training set, we also apply ADASYN
to resample the positive samples so that the number of positive
and negative samples are balanced. Figure 16 shows the evaluation
of the TPR with the increasing training set size. The result shows
that as the training set size increases the TPR also rises. However,
we see that after 30 samples per class the average TPR plateaus at
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Figure 16: Impact of training set size on TPR. Using 30 train-
ing samples per class is sufficient.
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Figure 17: FAR under both random guess and mimicry at-
tack.

around 96%. This suggests that we do not need too many training
samples to construct a good predictive model.

4.1.5 Different Negative Dataset. To analyze the impact of the se-
lection of negative samples on classification, we randomly selected
5 users out of the 39 participants as representative of the negative
classes while the remaining 34 users as positive class. We test the
model against ‘𝑍 ’ gesture and repeat the whole process 20 times.
We find the average TPR to be 94.94 with a 95% confidence interval
of [94.41, 95.57] (while the average the F-Score is 96.53). This result
suggests that our approach is not dependent on the selection of
negative samples and we can easily bootstrap our approach with
any negative samples.

4.1.6 Expected Number of Attempts. The expected number of at-
tempts required to authentic a user is another important usability
factor. We record the number of attempts needed to successfully
authenticate all gestures cross all users. The overall average number
of attempts required is 1.05 ± 0.24. With two attempts, HandLock
can achieve a TPR of 99.35%, while the accuracy is 99.91% with three
attempts. Thus, we can limit to three attempts to thwart attacks and
fall back on app based authentication.

4.2 Resilience to Attacks
To evaluate the resilience to attacks, we use 30 samples from each
user as training set.We apply ADASYN to upsample each 30 positive
instances and select the top 960 features to train a RF model (this
constitutes the best configurations as described in the previous
section).

4.2.1 Random Gesture Attack. We use Dataset 3 (see Table 4 for
details) to assess the system’s resilience to random gesture attack.
We test all 300 random gestures collected from 10 users to authenti-
cate HandLock against each user’s binary classification model. We
test 10 times for each user model and calculate the average rate
of recognizing the gesture for the enrolled user. The blue bar in
Figure 17 shows the average FAR of random gesture attack for each
gesture, which is 2.61%, 2.77%, 2.84%, 3.11%, and 3.26% for ‘𝑍 ’, ‘𝑊 ’,
‘𝑋 ’, ‘✓’, and star (‘9’), respectively.

4.2.2 Gesture Mimicry Attack. We use Dataset 4 (see Table 4 for
details) to evaluate the system’s resilience to gesture mimicry attack.
Here, six attackers individually mimic the gesture of a given victim
for all five gestures. Figure 17 depicts the average FAR of each
gesture under this attack setting. Overall, the FAR for the ‘𝑍 ’ gesture

is close to 6.2%, followed by the ‘𝑋 ’ with 5.14%. However, the ‘9’
has the lowest FAR of 3.52%. The most probable reason for this is
that simple gestures such as ‘𝑍 ’ and ‘𝑋 ’ are simple and more likely
to be properly emulated, whereas the ‘9’ gesture is more complex
and less prone to emulation attack.

We also test if other users’ same gestures can be used to bypass
HandLock. We select 30 samples from each of the other 33 users
(i.e., 990 test samples) excluding the user whose samples are used
to train a model, to test the robustness of HandLock. The FAR is
7.17%, 6.68%, 5.28%, 4.13%, and 3.76% for ‘𝑍 ’, ‘𝑊 ’, ‘𝑋 ’, ‘✓’, and ‘9’,
respectively. Thus, we see similar level of resiliency against mimicry
attacks. Furthermore, by limiting authentication attempts to three,
we can drastically thwart adversarial attacks.

4.2.3 Audio Replay Attack. To emulate replay attack, we select a
high performance UMA-8 USB microphone array [10], which can
record audio at 48𝑘𝐻𝑧 sampling rate. We placed the microphone
array close to the target VA at a distance of 20 𝑐𝑚 while a user
was performing ‘𝑍 ’ gestures. Next to we use a Sony SRS-X5 louder
speaker [9] to replay the recorded gesture session at 70 dB from
a very close distance of 5 𝑐𝑚 from the VA to give the attacker the
best chance of authentication. We collected 60 replayed gesture
samples and tested the samples using our original trained model.
HandLock achieves a FAR of 3.33%. This suggests that HandLock is
robust against replay attacks where the attacker has the capability
to record authentication sessions from a very close distance.

4.3 Sensitivity Analysis
4.3.1 Multiple users settings. To study the impact of the number
of users among which HandLock should distinguish, we consider
two enrollment scenarios: 1) different users enroll with the same
single gesture (MUSG); 2) different users enroll with different ges-
tures (MUMG). We repeat the same experiments as described in
Section 3.5 for four different values of enrolled users, ranging from
U = 2 toU = 5, in these two scenarios. We use the highest number
of users as U = 5 because more than 96% households in the US
have less than 6 members according to the United States Census
Bureau [2]. To calculate the overall accuracy of HandLock for each
gesture, we randomly selected 5 users out of 39 participants as neg-
ative class, and each of the remainingN= 34 users as positive class
with unique positive labels. We test each user with 30 samples as
positive class and 30 samples from the negative class and calculate
the average TAR and FAR for K= 5 gestures across all users.

In enrollment scenario 1, we repeat the experiment 5 times,
where each experiment runs K .N𝐶U = K N!

U!(N−U)! times. The
blue bar in Figure 18 show the TPRs. We see that the average
accuracy of HandLock reduces as the number of enrolled users in-
creases. Nonetheless, we observe that the average TPR of HandLock
is above 90% for 5 users. In enrollment scenario 2, the number of
negative training samples vary with the number of unique gestures
the enrolled users use. For example, if K= 2 users enroll with two
different gestures, the total training samples for negative class will
be 2 × 30 × 5, which includes 30 samples per gesture from five
users representing the negative class. Consequently, we run each
experiment N𝑃U = N!

(N−U)! times. We again repeat each experi-
ment 5 times. The red bar in Figure 18 show the TPRs. The result
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Figure 18: Impact of the number of users enrolled. As the
number of enrolled user increases, the TPR slightly drops.
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Figure 19: Impact of the number of microphones used. Com-
bining multiple microphones results in improved accuracy,
but computational overhead increases.

shows that the TPRs decrease more compared to the TPRs found in
scenario 1. However, the FAR remains below 0.78% for U = 5 users
as the negative class contains more information (i.e., exposed to
more negative instances).

4.3.2 Impact of the number of microphones used. To evaluate how
the performance is impacted by the number of microphones used,
we select 𝑛 (1 ≤ 𝑛 ≤ 5) out of the six microphone data. Conse-
quently, we have 6𝐶𝑛 combinations for each gesture. We run 5
experiments including any 𝑛 microphones using the 960 top fea-
tures. Figure 19 shows that the average F-Score, in general, improves
for all gestures when increasing the number of microphones. The
average F-Score using two microphones for five gestures is above
96%, which means HandLock still can achieve reasonable accuracy
even with 2 microphones.

4.3.3 Temporal stability. The motivation behind evaluating the
accuracy of HandLock using training and testing samples from dif-
ferent days is that in the real world, the user will provide training
samples only on the first day when setting up HandLock, and then
HandLock should be able to identify them on subsequent days. To
calculate the overall accuracy of HandLock for each of the five ges-
tures using training and testing samples from different days we
randomly chose 10 participants out of our 39 and collected addi-
tional data after one week and one month of their first visit (i.e.,
Dataset 2 in Table 4). Figure 20a shows the FRR for 5 gestures for
three different time-periods, where all models are trained on the
data from the first visit. We can see that in general FRR slightly in-
creases. However, we can potentially reuse high confidence samples
as training data and rebuild the model periodically.

F
R

R
 (

%
)

Day Week Month

(a) No incremental learning

F
R

R
 (

%
)

Day Week Month

(b) Incremental learning

Figure 20: FRR over time (day, week and month).

To rebuild the model periodically, we compute the ROC curve
on the data collected from the first visit (i.e., Dataset 1 in Table 4)
and determine the threshold (i.e., prediction probability) for the
optimal operating point. We next adopted an incremental learning
approach, where we divide the 30 test samples from the following
week andmonth into 6 batches where each batch contains 5 samples.
We then reuse the test samples that are correctly predicted with a
probability greater than the optimal threshold (0.75) to retrain our
model. Figure 20b shows the FRR when using incremental training
approach. We see that FRR reduces compared to Figure 20a.

4.3.4 Impact of distance . To evaluate the impact of distance from
the hand to the microphone, three participants were asked to per-
form 20 samples of the ‘𝑍 ’ gesture at varying distances of 10 𝑐𝑚,
20 𝑐𝑚, 30 𝑐𝑚, 40 𝑐𝑚, 50 𝑐𝑚. We test the model trained on Dataset 1
(see Table 4 for details) using the samples collected under different
distances. After running the experiment 10 times we found the av-
erage TPR to be 93.50%, 95.10%, 94.58% and 86.28% for the distance
of 10 𝑐𝑚, 20 𝑐𝑚, 30 𝑐𝑚 and 40 𝑐𝑚, respectively, compared to the
reference TPR of 95.17% for the 3 users. The result shows that our
system has stability within the distance of 10 ∼ 30 𝑐𝑚, but the per-
formance drops by 9% at 40 cm distance. Our segmentation method
only successfully segments 20.15% of samples at the distance of 50
𝑐𝑚, as the Q traces are too weak to surpass our threshold 𝑇 . Thus,
our system currently performs well for any distance ≤ 30 cm.

4.3.5 Impact of ambient noise. To evaluate the impact of environ-
mental noise, we set up our device one meter away from a TV
broadcasting news with a sound pressure of 80 dB. Three partici-
pants were asked to perform 20 samples of ‘𝑍 ’ gesture. We observe
that the background noise is below 15 kHz, confirmed by analyzing
the spectrogram of the data collected. We test the model trained
on Dataset 1 (see Table 4 for details) for the ‘𝑍 ’ gesture and test on
the sample collected under ambient noise to determine robustness.
After rerunning the experiment 10 times, the average TPR is 95.10%.
Compared to the reference TPR of 96.29% (see Table 5) we can see
that the ambient background noise typically found at homes does
not significantly impact our system.

4.3.6 Cross-environment analysis. To evaluate the impact of differ-
ent surroundings (e.g., rooms), we collected one additional dataset
under home setting (e.g., inside a bedroom). We collected 60 sam-
ples of ‘𝑍 ’ gesture. We then test the model trained on Dataset 1
(see Table 4 for details) for the ‘𝑍 ’ gesture. The average TPR was
around 89.33%. To improve the robustness, we adopted an incre-
mental learning approach, where we divided the 60 test samples
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into 12 batches with each batch containing 5 samples. We then use
high confidence testing samples ( i.e., test sample predicted proba-
bility ≥ 0.75) to retrain our model. We found that with incremental
learning approach, HandLock can achieve a TPR of 98.5%.

4.4 System Performance
Next, we present the processing latency and memory consump-
tion of our implementation of HandLock on a personal computer
which is equipped with Intel i7-2600 3.40GHz processor and 16
GB RAM. Identifying a legitimate user for a given gesture sample
(in the binary classification setting) using six audio-stream data,
took on average 56 ms. When generating classification models, our
implementation used an average memory of 214 MB. Respeaker
Core V2 is equipped with quad-core ARM Cortex A7 (1.5GHz) and
1 GB RAM. Thus, our memory requirement can easily be fulfilled
by commodity VAs.

5 USER STUDY AND FEEDBACK
In this section, we analyze the usability of HandLock by conducting
a post-study survey, where all participants providing hand gesture
data complete a survey at the end of the data collection process.
We also ask participants to compare HandLock against an existing
app-based 2-FA approach, where users authenticate by tapping a
button on the app.
Data Collection Procedure. Each participant in our study com-
pleted a post-study survey, where they were asked about their
experience and expectations using our proposed gesture-based au-
thentication technique. We also asked participants questions about
comparing our approach with a tap-based 2-FA approach on a mo-
bile app. Table 6 list the basic questions asked. Participants also
answered the SUS (System Usability Scale) questionnaire, which is
a well-known standard for measuring the usability of software sys-
tems and consists of 10 standard usability questions, each with five
possible answers (5-point Likert scale, where 1 represents strong
disagreement and 5 represents strong agreement) [12] (the 10 ques-
tions are provided in Table 7 in Appendix A). We compute SUS
score for both HandLock and the app-based 2-FA approach.
Takeaways. In analyzing the user responses, we filtered out one
user as he/she completed the survey in 75 seconds which is below
the median response time (546 seconds) by a factor of 7 (i.e., the
user most likely did not pay much attention to the questions).

First, we analyze user’s experience and expectations for using
HandLock. 93.18% (41/44) participants consider HandLock to be
either extremely easy or somewhat easy to use as shown in Table 6.
88.64% (39/44) participants said they would probably or definitely
deploy HandLock on their own VAs. Around 77.27% of participants
felt HandLock is better (i.e., either somewhat or much better) than
using a mobile app-based 2-FA approach. Our survey also asked
participants for comments about the pros and cons of our approach.
Following are some examples of the comments received.

Table 6: Summary of post-study survey and responses.

Question Response (count)

How easy was it to use our
system (HandLock)?

Extremely easy (24), Somewhat easy
(17), Neither easy nor difficult (3),
Somewhat difficult (0), Extremely dif-
ficult (0)

What would be an accept-
able duration for authenti-
cation?

Less than 1 sec (9), 1–4 sec (28), 4–8
sec (6), More than 8 sec (1)

At most how many
authentication attempts
would you be comfortable
making?

1 (6), 2 (13), 3 (20), 4 (2), 5 (3)

Would you deploy Hand-
Lock on your voice assis-
tant?

Definitely yes (14), Probably yes (25),
Might or might not (1), Probably not
(4), Definitely not (0)

Compare HandLock with
an app-based 2-FA ap-
proach (i.e., tapping)

Much Better (16), Somewhat bet-
ter(18), About the same (10), Some-
what worse (0), Much worse (0)

P1: I think range is a very important factor in terms of user
experience. If I can unlock the assistant while sitting on a
bed/sofa, that would be quite impactful.
P18: Advantage is you only need yourself (no phone on you).
Disadvantage is your hands have to be free.
P21: More convenient than other authentications. The sound
could be more pleasant, if it’s a tune.
P28: Very hygienic, no need for other equipment or network.
Looking forward to it, I hope it can be put into the market
and applied in practice as soon as possible.
P38: Handlock – gesture-based authentication is a very sim-
ple, efficient and fast way of getting access. The only thing I
would like to suggest is it should be compact.
As we can see from the comments, in general, the participants

felt that the system was easy to use. There were some concerns
about being close to the device and having full hand functionality.
However, we feel these are concerns that are not likely to manifest
too often in reality.

The authentication duration plays a vital role in assessing us-
ability. Vast majority of the (63.64 %; 28/44) participants report
that the acceptable duration for authentication should lie within
1 ∼ 4 seconds. We computed the average duration for perform-
ing a single gesture to be around 1.89 (±0.64) seconds. Since, the
average processing latency is 56 milliseconds (as we reported in
the Section 4.4), the total end-to-end verification time required by
HandLock is around 2 seconds. Thus, our approach would satisfy
the expectation for the majority of the users. In terms of num-
ber of authentication attempts, 88.64 % participants (39/44) would
tolerate at best three attempts. In Section 4.1.6, we show that the ex-
pected number of attempts required for a successful authentication
is around 1.05 ± 0.24, which is below the tolerance level indicated
by the participants.

Next, we will compare HandLock with other alternatives using
SUS scores. A SUS score of above 68 is typically considered above
average and anything below 68 is below average [12]. Based on
the participants’ responses the mean SUS score for HandLock is
71.88 ± 18.69, while the mean SUS score for an app-base 2-FA is
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62.96 ± 12.25. One reason for HandLock obtaining a higher SUS
score is that the participants consider the system as device-free
and easy-to-use as evident from their free text comments. For the
participants who own VAs, the mean SUS score for HandLock and
app-based 2-FA is 74.64 ± 17.58 and 64.05 ± 15.26, respectively. For
the participants who did not own VAs, the mean SUS score for
HandLock and app-based 2-FA is 69.35 ± 19.69 and 61.96 ± 13.53,
respectively. Thus, in general, participants found our approach to
be more usable than an app based 2-FA approach.

6 LIMITATIONS AND DISCUSSION

Sound Generation. The majority of our participants could not
hear the generated sound. However, a few participants could hear
the sound. The National Institute of Occupational Safety and Health
(NIOSH) defines hazardous noise as sound that exceeds 85 dB over
a typical 8-hour day [22], which could cause hearing loss. In reality
HandLockwould play near-ultrasound sounds just for a few seconds
at the sound pressure level of 50 dB (SPL) during the authentica-
tion process. Thus, our approach most likely will not cause any
hearing issues. To further improve the usability, we can either use
higher frequencies sound (i.e., above 18kHz) or use low frequency
music/tone (e.g., ≤ 8𝑘𝐻𝑧), something we plan to explore in the
future.
Simultaneous Movements Currently, we assume that at any
given time, only a single user performs a predefined gesture. Hand-
Lock further assumes that while a user performs a predefined ges-
ture, there are no background movements close to the device. If
multiple users perform predefined gestures simultaneously or if
there are background movements close to the device, HandLock
may not identify the users from the gestures. HandLock’s accuracy,
however, is not impacted significantly by the movements of peo-
ple 3 meters away from the device as we observed that the signal
interference is very weak from such distance.
Distance Limitation. In our setting, the user performs the gesture
on top of the device from a distance of 5 to 30 cm. Millisonic [50]
made a preliminary effort towards tracking gestures at room scale.
In future, we plan to explore augmenting HandLock to enable user
identification from gestures at longer distances.

7 CONCLUSION
In this paper, we present a new modality of acoustic signal based 2-
FA system for smart home voice assistants, called HandLock. Hand-
Lock extracts unique movement characteristics of a user’s hand
gesture. We extensively evaluated HandLock using a large data set
of over 15,000 gesture samples, covering five common gestures and
showed that it can achieve an average TPR of 96.51% across 34
users while the FAR is 0.82%. However, HandLock can achieve a
TPR of 99.91% with three gesture attempts. We also extensively
evaluate HandLock’s accuracy, stability and resiliency to attacks
under various settings. We believe this simple, yet effective 2-FA
approach is a first step towards helping consumers better protect
sensitive operations carried out by voice assistants.
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A SUS QUESTIONNAIRE

Table 7: SUS questions

Item Question
1 I think that I would like to use this system frequently.
2 I found the system unnecessarily complex.
3 I thought the system was easy to use.

4 I think that I would need the support of a technical
person to be able to use this system.

5 I found the various functions in this system were
well integrated.

6 I thought there was too much inconsistency in this
system.

7 I would imagine that most people would learn to use
this system very quickly.

8 I found the system very cumbersome to use.
9 I felt very confident using the system.

10 I needed to learn a lot of things before I could get
going with this system
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