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ABSTRACT
With the growth of computer vision applications, deep learning, and

edge computing contribute to ensuring practical collaborative intel-

ligence (CI) by distributing the workload among edge devices and

the cloud. However, running separate single-task models on edge

devices is inefficient regarding the required computational resource

and time. In this context, multi-task learning allows leveraging a

single deep learning model for performing multiple tasks, such as

semantic segmentation and depth estimation on incoming video

frames. This single processing pipeline generates common deep fea-
tures that are shared among multi-task modules. However, in a col-

laborative intelligence scenario, generating common deep features

has two major issues. First, the deep features may inadvertently

contain input information exposed to the downstream modules

(violating input privacy). Second, the generated universal features

expose a piece of collective information than what is intended for

a certain task, in which features for one task can be utilized to

perform another task (violating task privacy). This paper proposes
a novel deep learning-based privacy-cognizant feature generation

process called “MetaMorphosis” that limits inference capability

to specific tasks at hand. To achieve this, we propose a channel

squeeze-excitation based feature metamorphosis module, Cross-SEC,
to achieve distinct attention of all tasks and a de-correlation loss

function with differential-privacy to train a deep learning model

that produces distinct privacy-aware features as an output for the

respective tasks. With extensive experimentation on four datasets

consisting of diverse images related to scene understanding and

facial attributes, we show that MetaMorphosis outperforms recent

adversarial learning and universal feature generation methods by

guaranteeing privacy requirements in an efficient way for image

and video analytics.
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1 INTRODUCTION
Computer vision-based technologies have seen widespread adop-

tion over recent years due to improved performance. This use is

not limited to the rapid adoption of facial recognition technology

but extends to autonomous driving [37], scene recognition, and

more [9, 29]. As a result, organizations and even cities have started

utilizing video feeds to carry out various automated tasks. However,

while computer vision-based technologies provide new opportuni-

ties, they also raise privacy concerns and call for novel solutions to

ensure adequate privacy protection.

One trivial way to protect sensitive information is not to send

protected information outside the organization by any means, i.e.,

to train the deep-learning model within the respective organiza-

tion providing the inputs. That implies the input-providing orga-

nizations (i.e., producers/publishers/feature providers) also have to
construct various models for different tasks, e.g., object detection,

depth estimation, etc. One of the drawbacks of this approach is

that organizations owning the video/input feed will also need to

develop the entire analytic pipeline whose primary interest may be

orthogonal to building deep learning models, such as hospitals or

grocery stores. Organizations can also resort to video analytics as a
service where companies are now offering essential video process-

ing pipelines as paid services [13, 27]. However, outsourcing video

feeds to cloud services also raises privacy concerns as video feeds

can be used to infer various sensitive information. As an alternative,

a hybrid approach can also be adopted where instead of sending the

raw input, some useful derived features are shared with the third
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Figure 1: Overview of MetaMorphosis.

party (i.e., consumers) to prevent unintended information leakage.

This approach is known as collaborative intelligence.
In collaborative intelligence, intelligence is shared across more

than one entity to split the computation overload, where one entity

can run a portion of a deep model and send the intermediate partial

output as “features” to another entity for further computation. In

this way, the input can be replaced by meaningful features. One of

the popular architectures adopted in this context is the multi-task
learning paradigm, which offers an efficient solution to reduce com-

putational resources across different analytic tasks. The efficiency

comes through the introduction of a shared deep layer to produce

universal features usable by all downstream tasks [21]. Unfortu-

nately, it does not fully diminish the privacy concern. The shared

features, also called intermediate representations, can be reverted

to the actual input, thus violating input privacy and affecting the

whole notion of providing deep features rather than the input itself.

Similarly, the universal features generated for multi-task learning,

when subscribed by different downstream tasks, can also leak unin-

tended information leading to violating task privacy. From a privacy

and business perspective, if the task-oriented features differ, the

producers can offer specific features based on consumers’ objectives

and hide private attribute information from each task. For example,

for a given image, the feature for segmentation will be different

than the feature for depth estimation or classification.

In this paper, we focus on a publisher-subscriber-based multi-

party communication system where one party acts as a publisher,

and the rest acts as a consumer/subscriber (Figure 1). The feature

publishing party also known as the feature provider or the publisher

holds the data and private information, and with proper intelligent

tweaking, it provides privacy-aware task-variant features to con-

sumers. Consumers, on the other hand, consume the features rather

than the input and train a task according to the features. Without

loss of generality, we can assume that the producer can securely

share the output with the consumer so that the consumer can train

the rest of the remaining part using the task-variant features. With

respect to deep learning tasks, mapping the feature to output does

not violate our assumption of securing object attributes rather than

the type of objects for classification cases. In the case of object

detection, segmentation, or depth estimation, it can be shared to

blur the attribute of the objects.

To achieve data and task privacy, we propose MetaMorphosis,

which consists of two modules, (a) a private encoder trained using

differential privacy, and (b) a task metamorphosis module for each

task for task privacy. The private encoder protects identifiable

information from input, which we refer to as input obfuscation.

The task metamorphosis modules help to form distinct features for
each task. The privacy of the encoder depends on the requirement of

privacy based on the data. So, the producer can hold private and non-

private encoder submodules to offer both options to the consumers

based on the privacy requirement. The whole functionality of the

producer will be obscured so that the consumer cannot determine

the types and characteristics of the construction of the producers.

Several challenges arise when offering task-oriented privacy-

aware features. Firstly, the joint training of input obfuscation and

task privacy in a single phase makes the whole process challeng-

ing due to the uncertainty of leaking unintended information to

task-specific features. Secondly, a sophisticated feature morphosis

module is required to achieve the right balance of performance

and privacy. Finally, the proposed approach has to be scalable to

facilitate new tasks with minimal training effort. In order to ad-

dress the challenges, we propose MetaMorphosis and specify the

contribution of this work as follows.

• We propose MetaMorphosis, which ensures input obfusca-

tion and privacy-aware task variant feature generation to

prevent information leakage through the shared features

while still providing acceptable outcomes for the intended

tasks.

• We propose a novel task metamorphosis module Cross-SEC
that maintains or even improves the performance in addition

to producing distinct task-specific features.
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Table 1: Comparison of MetaMorphosis with recent literature

Characteristics MetaMorphosis DeepObfuscator [18] TIPRDC [17] ALPPTOR [42] P-FEAT [10]

Input obfuscation ✓ ✓ ✓ ✓ ✓

Noisy models parameters ✓ ✗ ✗ ✗ ✗

Task privacy ✓ ✗ ✗ ✗ ✗

Scalable Good Poor Poor Poor Poor

Quantifiable privacy ✓ ✗ ✓ ✗ ✗

Feature sharing Task-specific Universal Task-specific Task-specific Universal

Training budget LOW HIGH HIGH HIGH HIGH

• We reduce the training time of task-specific feature gener-

ation by collaborating on the task-invariant and metamor-

phosis modules.

• The scope for sequential and parallel training helpsMetaMor-

phosis improve scalability compared to recent adversarial

learning methods, such as [18].

The rest of the paper is organized as follows. Section 2 describes

the motivation of our work by comparing it to similar works. Sec-

tion 3 explains the MetaMorphosis. We present the findings in

Section 4. Section 4.1 defines the datasets and metrics that we use

in the analysis. We also evaluate training and inference results after

deployment of MetaMorphosis in Section 5. An ablation study is

conducted to show the reasons behind choosing specific modules

and parameters in Section 6. Related work is added in Section 7.

Finally, we conclude in Section 8.

2 MOTIVATION AND CHALLENGES
Various kinds of deep learning models [4, 5, 11, 33, 40] have been

proposed to resolve visual applications with multi-task learning

setups such as semantic segmentation, and depth estimation, effi-

ciently. Khattar et al. [16] propose a multi-task learning framework

where domain-agnostic features are learned to improve the model

performance on both object detection and saliency prediction tasks

with limited data. Meanwhile, techniques such as knowledge distil-

lation fit well with multi-task training where knowledge is distilled

from single models by minimizing the distance, thus contributing

to fast training of multi-task models [19–21]. As a universal feature

is shared for all downstream tasks, it is computationally efficient

but raises a privacy concern while sharing with outside agents due

to offering a common feature for all tasks. Similar behavior pat-

terns can be found in other recent literature [2, 3] where features

from multiple layers of deep models are fused to form the universal

features and image classification task is accomplished.

To preserve the privacy of the universal features, several ad-

versarial learning algorithms have been proposed [17, 18] to ob-

fuscate intermediate representation. In this, adversarial decoders

and classifiers are trained jointly with the intended classification

task to obfuscate features [18]. TIPRDC [17] is also designed to

hide private information from the feature vector while retaining

the feature’s utility regarding the primary task through a hybrid

training algorithm. ALPPTOR [42] framework proposed a GAN loss

to prevent model-inversion attack by adversarial reconstruction

learning and provide task-oriented representations for binary clas-

sification tasks. P-FEAT [10] proposed two adversarial objectives

for privacy-preserving feature encoding-based adversarial training,

which considers privacy attributes and privacy-attribute agnostic

scenarios. In split federated learning [35], intermediate features

of IID data are shared with the server and the server returns the

gradients back to clients.

These methods face drawbacks at the time of adding a new task

to the framework, as adversary decoders and classifiers need to be

trained again with the addition of new tasks. Another disadvantage

is the need for ground truth in all tasks to train the whole pipeline to

prevent features from being attacked by intruders. With the devel-

opment of edge computing technology, the emerging collaborative

intelligent technique allows computational-constrained devices to

participate as end-users where sharing of intermediate representa-

tion takes the first place to connect two entities. Table 1 compares

the overview of MetaMorphosis with related recent literature to

show the effectiveness of MetaMorphosis. Rather than training

a decoder to decode the intermediate representation to a noise,

MetaMorphosis uses differential privacy along with an intelligent

split learning method, which can guarantee obfuscation of input as

well as achieve target performance. MetaMorphosis assures task-
privacy by making the intermediate features distinct from each

other, which limits the necessity to have ground truth for all tasks.

With ground truth, extra DNN models are required for training an

adversary classifier. At the time of addition of a new task, Meta-

Morphosis learns to make the new task features distinct from the

already added tasks. Thus, MetaMorphosis ensures better scala-

bility and a low training budget. To produce the distinct features,

MetaMorphosis offers a novel metamorphosis module. In summary,

MetaMorphosis answers the following key questions:

• How to reduce the input information leak while sending

deep features rather than the input itself?

• How to overcome privacy issues regarding universal features

for all tasks?

• How to design a lightweight task metamorphosis module so

that the performance drop should be negligible and almost

similar to the performance of a single task?

3 METAMORPHOSIS
Generating features for different tasks is the core part of MetaMor-

phosis and as a result, several considerations are undertaken in the

construction of the producer to enhance the target performance

and privacy, reduce memory issues, and latency of the system.



IoTDI ’23, May 09–12, 2023, San Antonio, TX, USA Arefeen et al.

3.1 Privacy Cognizant Feature Generation
At first, task-oriented single models cannot be provided due to

zero task privacy for independent training. In addition, memory

requirements will increase when new tasks are assigned. So, a

multi-task model is required to reduce the number of models. In

this way, one model can provide a universal encoder to produce

the features for all tasks. But the drawback of the latter method

for producing universal representation lies in the degradation of

performance and privacy in some cases for de-correlated tasks. For

example, the data owner can issue a restriction on reconstructing

the images from the encoded features for facial image attribute

classification. But for semantic segmentation or depth estimation

tasks, privacy can be imposed on the feature generation so that

unique features are generated for each task at hand. A universal

representation fails to either provide high accuracy for all tasks or

prevent privacy attacks due to providing the same features for all

tasks, e.g., the same features are provided for gender classification

and smile classification from facial images.

Furthermore, a producer cannot offer any arbitrary feature for

any task. To claim a good performance over some offered tasks,

it needs to train the whole pipeline in an end-to-end fashion to

provide a meaningful feature for a certain task. The notations used

throughout the paper to describe MetaMorphosis are shown in

Table 2.

To construct the model in a cost-effective fashion and to reduce

the model size as well, we divide the producer into a feature ex-

tractor part (encoder E), a MetaMorphosis module (g(.)), and the

target task. For clarity, we use the producer, feature extractor, and

encoder as the same entity, E or E𝑝 (encoder trained with differen-

tial privacy) throughout the paper. To produce meaningful features,

the producer goes through a full training effort respecting the in-

put obfuscation and task privacy. After training the whole model,

the producer splits the model into two parts: one part includes a

semi-universal encoder for some sub-tasks and unique transformer

modules for each of the tasks. For other similar sub-tasks, another

similar feature extractor module may exist. The remaining part

will be hidden from the outside environment and is kept on the

producer side only. Thus, the producer will offer access points for

only subscribed consumers for the respective tasks. But where to

split is an issue in maintaining communication vs. computation

trade-off (see Sections 5 and 6). Although the earlier layers are suit-

able for a lightweight encoder, they may be prone to reconstruction

image attack very easily. It is difficult to retain the original image

from the layers closer to the outputs. The feature provider should

also offer features so that consumers will produce the final output

for a task with minimal effort.

Table 2: Notation

Description Notation Description Notation

Input x Output y
Producer Model M𝑓 Consumer Model M𝑐

Task T Task features z
1,2,...,T

Task Metamorphosis Module g Encoder E
Private Encoder E𝑝 Private Feature z𝑝
MetaMorphosis G Decoder E−1

To design MetaMorphosis, suppose a modelM𝑓 is trained by

the producer that provides features for a corresponding task T𝑖
for an input x. At the time of inference, the producer will share

the intermediate features as output, denoted by z𝑖 , from a portion

of the model G𝑖 where G𝑖 ∈ M𝑓 . After getting the features z𝑖
instead of the raw input x, the consumer runs its own modelM𝑐

on z𝑖 and produces ŷ𝑖 for task T𝑖 where the ground truth is y𝑖 .
Mathematically, it can be written as follows.

min y𝑖 ∼ ŷ𝑖 =M𝑐 ◦ (G𝑖 ◦ x) =M𝑐 (z𝑖 )

s.t. 𝐴𝑐𝑐 (T𝑖 |z𝑖 ) −
∑︁
𝑖≠𝑗

𝐴𝑐𝑐 (T𝑗 |z𝑖 ) ≈ 𝐴𝑐𝑐 (T𝑖 |z𝑖 )

𝐴𝑐𝑐 (T𝑖 |z𝑖 ) ≥ 𝜉 ; 0 < 𝜉 < 1

(1)

In Equation 1, the objective is to maintain the target performance

(𝐴𝑐𝑐) for taskT𝑖 and obfuscate the input (x) and features (z) to limit

the accuracy of all other tasks with the current task features. As

M𝑐 and G𝑖 will not be processed by the same party, a few privacy

considerations should be established. Based on this, we can divide

the overall producer construction into two components: (1) Input
obfuscation, and (2) Task-privacy.
In the next subsections, we will investigate thoroughly Equation 1

in terms of input obfuscation and task privacy and discuss the final

equation as shown in Equation 8.

3.2 Input Obfuscation
By input obfuscation, we mean the input should be made private

so that the features provided by the producer cannot be converted

back to the original input by an attacker. If 𝑧 = E(x;𝜃E ), then it is

nearly impossible to find a E−1
so that E−1 (z) = x.

To ensure input obfuscation, we propose an efficient use of differ-

ential privacy which is defined as follows.

Definition 3.1. If 𝑑 and 𝑑′ are two adjacent inputs of 𝐷 that differ

by at least one sample and they follow a certain condition such that

𝑃𝑟 [f (𝑑) ∈ 𝐷] ≤ 𝑒𝜖𝑃𝑟 [f (𝑑′) ∈ 𝐷] + 𝛿 (2)

where, f is a randomized function, i.e., f : 𝐷 −→ R, then f satisfies
(𝜖, 𝛿) differential privacy (DP) [1].

Definition 3.1 is also known as R𝑒nyi-differential privacy [28]

which is a relaxed version of 𝜖-DP with a 𝛿 . From Equation 2, we

see that the higher the value of 𝜖 , the lower the privacy bound. Dif-

ferential privacy operations in deep learning models are shown in

Algorithm 1 where noises are added with gradients before updating

the parameters [1]. To get a desired 𝜖 , the noise 𝜎 can be chosen

for a number of training steps 𝑇 , batch size 𝑞, and 𝜖 < 𝑐1𝑞
2𝑇 as the

following Equation 3 [1]. Here, 𝑐1 and 𝑐2 are constants.

𝜎 ≥ 𝑐2

𝑞

√︃
𝑇 log

1

𝛿

𝜖
(3)

Rather than adding differential privacy in the input as shown in

recent literature [18], we perform DP in model parameters for input

obfuscation. As in MetaMorphosis, the producer holds the feature

extractor part only, to generate meaningful features, the feature

extractors along with target classifiers are required to train jointly.

A split learning method can reflect the scenario where a model is

split into the feature extractor part and the classifier part. So, we
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Algorithm 1 Differential Privacy Operations

1: function Gradient Computation(.)

2: 𝑔𝑡 (𝑧𝑖 ) ←− ∇𝜃𝑡L(𝜃𝑡 , 𝑧𝑖 )
3: end function
4: function Gradient Clipping(.)

5: 𝑔𝑡 (𝑧𝑖 ) ←− 𝑔𝑡 (𝑧𝑖 )/max(1, | |𝑔𝑡 (𝑧𝑖 ) | |2
𝐶

) ⊲ Gradient Clipping

with certain threshold 𝐶

6: end function
7: function Noise Addition(.)

8: 𝑔𝑡 (𝑧𝑖 ) ←− 1

𝑛

∑
𝑖 (𝑔(𝑧𝑖 ) + N (0, 𝜎2𝐶2I) ⊲ Adding noise to the

gradient

9: end function

Figure 2: Pictorial representation of privacy-aware task fea-
ture generation.

propose differential privacy with split learning to achieve input

obfuscation.

Split learning with differential privacy: Input obfuscation re-

sults in a trade-off between utility vs. privacy. As the main goal of

MetaMorphosis is to provide task-specific features, injecting noises

to ensure DP into the whole model parameters while training to

ensure only input obfuscation to the encoder E𝑝 in unnecessary

and it affects the task performance. In most cases, the consumer

resides in the public domain and making the consumer model pa-

rameters private have little effect on overall privacy constraints.

As a result, making only producer model parameters private will

suffice our goal. In that case, during training of the feature gen-

erator, the provider uses differential privacy to ensure the input

obfuscation of the generator only while learning the intended task

using the split learning method [35]. A detailed discussion of utility

vs. privacy is discussed in Section 4.3.

3.3 Task Privacy
As we consider the service provider (feature-provider) as an MLaaS

(Machine Learning as a Service) platform, the service provider/producer

will offer meaningful features for certain tasks to the public domain.

In this case, instead of providing a single universal interface, the

service provider offers multiple access points for some task-privacy-

related features to the subscribers/consumers. By task privacy, we

mean the features used for one task will not perform well for an-

other task. Mathematically, the deep features generated for one

task should be far apart from another task. We formally formulate

Figure 3: Cross-SEC Metamorphosis Module

task privacy as follows. For any input 𝑥 , if there exist 𝑛 feature ex-

tractors (G1...𝑛) for multi-task learning, then the optimal similarity

between any two feature extractors G𝑖 (.) and G𝑗 (.) satisfies the
following equation.

𝑛∑︁
𝑖≠𝑗

S(G𝑖 (x),G𝑗 (x)) ≈ 0 (4)

where S(., .) denotes a similarity function between two features.

To ensure task-privacy, the summation of the similarity between

features will be theoretically 0. A pictorial representation of task-

privacy transformation on certain feature z is shown in Figure 2.

TaskMetamorphosis Module: In MetaMorphosis, we propose

a novel feature module for each task, instead of sharing a common

feature for all consumers. The main goal of each metamorphosis

module is to produce task-specific features as distinctively as possi-

ble with an assurance of better performance for the respective task.

In this way, the attacker is unable to produce meaningful features

for the specific private task. To ensure better performance, the meta-

morphosis module should capture the most informative feature of

the task. To achieve this, we propose an attention-based metamor-

phosis module, Cross-SEC, that enables the general features E to

be more informative. At first, we split the E(𝑥) into 𝑘 splits. For

each split, we get the global attention of the features. Using the

Conv-Linear-ReLU-Linear module, we transform the features and

add a Sigmoid activation layer to get the attention values. Then, the

attention is swapped between the splits following a Conv (1 × 1)

layer. At the time of joint training of E and g(.), the swapping of
attention values will try to make E more informative as it avoids

making only some channels of E more informative.

The metamorphosis module is shown in Figure 3 with the shape

for each layer. To make the task features distinct, we use a similarity

metric as used in recent literature [2, 18]. In this case, we use

the SSIM metric to compare the structural similarity among task

features, and in the loss function, it learns to project them far

from each other based on the weight given to this metric. The

task-privacy loss function can be written as follows.

ℓ𝑡𝑝 =
∑︁
𝑖, 𝑗∈T

1[T𝑖 ≠ T𝑗 ] S
(
g𝑖 (E(x)), g𝑗 (E(x))

)
(5)

This metric will be added to the loss function with other task per-

formance losses to achieve the desired behavior of MetaMorphosis.
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Together, we can write the whole equation as follows.

𝑙𝑜𝑠𝑠 =

|T |∑︁
𝑖=1

L𝑖 + 𝜔
∑︁
𝑖, 𝑗∈T

1[T𝑖 ≠ T𝑗 ] 𝑆𝑆𝐼𝑀
(
g𝑖 (E(x)), g𝑗 (E(x))

)
(6)

Here, 𝜔 controls the weight of the distance loss function to overall

loss. To make the feature generator more efficient, we can use a

single encoder and multi-task transformer modules for a group

of tasks. To assure task privacy and input obfuscation, we can

rewrite the function G as a composition of private-encoder E𝑝 that

prevents exposing the private information and a task transformer

module that converts the g. For task privacy only, the encoder can

be non-private (E).
G(x) = (g ◦ E𝑝 ) (x) (7)

We can combine these two aspects of privacy and elaborate the

Equation 1 and relax the constraints to achieve efficient training as

follows.

min y𝑖 ∼ ŷ𝑖 = (M𝑐 ◦ G𝑖 ) (x) = (M𝑐 ◦ g𝑖 ◦ E𝑝 ) (x) =M𝑐 (z𝑖 )
s.t. Ep−1 (z𝑖 ) ≠ x

T∑︁
𝑖≠𝑗

S(G𝑖 (x),G𝑗 (x)) ≈ 0

(8)

3.4 MetaMorphosis Training Scheme
The training scheme of MetaMorphosis is shown in Algorithm 2.

MetaMorphosis obfuscates the input and the tasks in two phases.

If input obfuscation and private attribute obfuscation are imposed,

then the encoder with the privacy attribute classifier is trained

jointly at Phase 1 [line 9 in Algorithm 2]. After the completion of

Phase 1, in Phase 2, the task variant metamorphosis modules are

trained along with the respective classifiers [line 10 in Algorithm 2],

where the encoder trained from phase 1 is kept fixed to provide

features. In line 9,M𝑝 refers to the private classifier (i.e. gender for

face images) that the publisher intends to hide. It will train other

tasks i.e.M𝑐𝑖 by hiding private information using task privacy [line

6-7, 10 in Algorithm 2]. After the completion of two-phase training,

the task features are ready for the consumers. Figure 4 shows the

steps of the training and inference scheme of MetaMorphosis. At

the time of inference, the producer will offer access points (z1,2,...,T)
for different tasks.

Algorithm 2MetaMorphosis

1: if Input obfuscation only then
2: ŷ𝑐𝑖 =M𝑐𝑖 ◦ E𝑝 ◦ g𝑖 (x) ⊲ forward pass

3: Compute L(y𝑐𝑖 , ŷ𝑐𝑖 )
4: Update 𝜃g𝑖 , 𝜃E𝑝 using Algorithm 1,Update 𝜃𝑐𝑖 ⊲ backward

pass

5: else if Task-privacy only then
6: Compute

∑ |T |
𝑖=1
L𝑖 + 𝜔

∑
𝑖≠𝑗 𝑆𝑆𝐼𝑀 (g𝑖 (z), g𝑗 (z))

7: Update 𝜃g𝑖 , 𝜃E , 𝜃𝑐𝑖∀𝑖 ∈ T
8: else
9: At phase 1, do steps 2-4 to joint train the E𝑝 andM𝑝

10: At phase 2, using 6-7 train g𝑖 , E𝑝 , andM𝑐𝑖

11: end if

Figure 4: Producer training and inference scheme

3.5 Threat Model
Before going into detail on experimental results, we describe the

attacker model in this section. For input obfuscation, we extract the

private encoder features and use a decoder model (Figure 8) to act

as an attacker trying to reconstruct the image. For task privacy, we

assume the consumer portion of the model architecture is as same

as the producer model architecture while training. In this, for all

cases of classifiers, we use the same model architecture (ResNet-18)

to act as an attacker. At the time of task privacy evaluation, we

interchange the task metamorphosis module but keep the classi-

fier layers and weights intact as the producer for the attacker. In

Section 4, we implement and evaluate MetaMorphosis on different

types of tasks and compare MetaMorphosis with recent relevant

literature.

4 EVALUATION
4.1 Datasets and Metrics
To have a deep understanding of MetaMorphosis performance, we

evaluate the task-privacy algorithm in different domains with vari-

ous task complexities. To simulate an indoor robot scenario, we use

the NYU-v2 dataset [29], which contains 1449 indoor images with

ground truth images on three tasks, i.e., semantic segmentation,

depth estimation, and surface normal estimation. We have used 795

images for training MetaMorphosis and evaluated the rest 654 im-

ages. To simulate the road scene-based tasks, we use the CityScapes

dataset [9], which contains 3475 vehicle road scene views. Based

on recent literature, we use the 2975 images for training and the

rest 500 images for testing the performance of MetaMorphosis. We

also use a large facial attribute dataset named CelebA [24] that

includes more than 200000 images (162000 for training, 40000 for

testing) to show multi-binary classification-based task privacy. For

the multi-class classification scenario, we use StateFarm (a total

of 22424 images, use 17934 for training and 4490 for testing ) to

validate the input obfuscation and task privacy.

4.2 Implementation details
We use PyTorch to implement MetaMorphosis and to execute the

training we use 4× 16 GB NVIDIA RTX A4000 workstation for all

datasets. We use cross-entropy loss as shown below for segmenta-

tion and compute the mean Intersection over Union (mIoU), and
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pixel accuracy as a performance metric as referred to [19].

L𝑠𝑒𝑔 = − 1

𝑚

𝑚∑︁
𝑖=1

𝑦𝑖 log𝑦𝑖 + (1 − 𝑦𝑖 ) log(1 − 𝑦𝑖 ) (9)

For depth estimation, we use the absolute error as described by [19]

and also use it in the loss function to minimize the depth error.

𝑀𝐴𝐸𝑑𝑒𝑝𝑡ℎ =
1

𝑁

∑
𝑖, 𝑗 |𝑦𝑖, 𝑗 − 𝑦𝑖, 𝑗 |∑
𝑖, 𝑗 1[𝑦𝑖, 𝑗 > 0] (10)

In surface normal estimation, we use the mean and median of

per pixel error and compute the fraction of error within a certain

threshold (11.25, 22.5, 30). For Cityscapes and NYU-v2, we use Adam

optimizer with an initial learning rate (LR) 1×10
−4

. A step learning

rate scheduler changes the LR with step size 100 and 𝛾 = 0.5.

We ran each experiment for 200 epochs and chose the best model

with the smallest average training error of all tasks. We then use

the best model for prediction. For NYU-v2, we use 13 classes for

segmentation, and for CityScapes, we use seven classes. The batch

size is 8 and 2 for Cityscapes and NYU-v2, respectively. We use 0.001

as weight on SSIM loss while adding task privacy. For the CelebA

and StateFarm datasets, we use 𝜖 = 4, and 1.2 as the maximum

gradient clipping (𝐶) for both StateFarm, and CelebA, and 𝛿 =

10
−5, 10

−6
respectively. The batch size is set to 64, and AdamW [26]

optimizer with LR=10
−4
. For data transformation, we resize to

make the images to 64 × 64 pixels, and use RandomHorizontalFlip

at training. The normalization parameters are used as same as

ImageNet. We use Opacus [45] to train the model using differential

privacy. We have chosen the lightweight ResNet-18 model, split it

in half at different points, and used the first portion as the encoder

and the rest as the private and intended classifier.

4.3 Experimental Results
CityScapes and NYU-v2:AsMetaMorphosis imposes privacy con-

straints either on the content or on the task or on both. Considering

task privacy we focus on NYU-v2 and Cityscapes dataset. For both

datasets, we use SegNet model [19] with knowledge distillation

during training. Table 3 shows the results on the test set using KD-

MTL [19] where privacy-aware feature generation is absent. With

the addition of cross-SEC metamorphosis module and SSIM loss

function, we compare the utility as the performance metric for both

and compare task privacy based on the interchange of the module.

For having the distilled knowledge, we first train every single model

to train a single task. Then using Algorithm 2 for task-privacy only,

we train the joint model to produce output similar to every single

model and add the privacy loss to make each task features distinct.

We joint train the segmentation, depth, and surface-normal esti-

mation for NYU-v2 using task-transformer module and compare

it without the task-transformer module and without task privacy.

For segmentation results, we observe a 7.61% higher mean Inter-

section Over Union (mIOU) than KD-MTL and a 2.25% higher pixel

accuracy metric. Compared to the depth estimation results, Meta-

Morphosis achieves almost the same results for absolute error and

a little worse in relative error. having a 𝑐𝑜𝑛𝑣 (1×1) for each task. As

cross-SEC transformer generalizes better task features. For State-

Farm dataset, we train for 20 epochs. For CelebA we train for 10

epochs.

Table 3: Test set results on CityScapes [9] dataset. MetaMor-
phosis achieves higher pixel accuracy for segmentation and
almost the same absolute error for depth.

Model Size Segmentation Depth

(MB) mIoU (↑) Pix Acc (↑) Abs Err (↓) Rel Err (↓)
KD-MTL [19] 300.90 52.18 91.24 0.0140 28.90

MetaMorphosis 307.00 59.79 93.49 0.0141 31.89

Table 4: Task-privacy evaluation of Cityscapes [9]. Use of one
task metamorphosis module to evaluate the performance of
other tasks. Using depth features for segmentation, lower
mIoU, and pixel accuracy indicate higher task privacy and
vice versa. For depth estimation, the higher error with seg-
mentation features indicates higher task privacy and vice
versa.

Metamorphosis Methods Segmentation Depth

Module (Replaced) mIoU (↑) Pix Acc (↑) Abs Err (↓) Rel Err (↓)
— MetaMorphosis 59.79 93.49 0.0141 31.89

Segmentation MetaMorphosis 59.79 93.49 0.1079 99.07

Depth MetaMorphosis 1.47 7.33 0.0141 31.89

To show the task-privacy evaluation, we use the trained segmen-

tation Cross-SEC module features to infer segmentation and depth

estimation and vice versa for depth estimation. From Table 4, we

observe a sharp drop in the performance of both tasks. For segmen-

tation, the mIoU and pixel accuracy drop down to 1.47% and 7.33%,

respectively. For depth estimation, the absolute error is almost 10×
higher using the segmentation feature.

Figure 5: Qualitative analysis of task privacy. Prediction
results of the segmentation and depth estimations of the
CityScapes dataset using MetaMorphosis (first row). The task
metamorphosis modules are interchanged and the output is
produced (second and third row).

We also observe the qualitative results of CityScapes using task

privacy as shown in Figure 5. The segmentation and depth esti-

mation outputs are almost obscured if respective features are not

used for respective tasks. To evaluate more complicated tasks, we
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Table 5: Test results on NYU-v2 dataset. In spite of imposing task privacy, MetaMorphosis achieves almost the same performance
as [19]. STL refers to the results of single-task learning models.

Model

Size

Methods

Segmentation Depth Surface Normal

(MB) mIoU (↑) Pix Acc (↑) Abs Err (↓) Rel Err (↓) Mean (↓) Median (↓) 11.25 (↑) 22.5 (↑) 30 (↑)

SegNet

300.90 STL 17.32 55.70 0.6577 0.2828 29.99 23.81 24.31 48.06 60.05

300.90 KD-MTL [19] 18.75 58.02 0.5780 0.2467 29.40 23.71 24.33 48.22 60.45

310.8 MetaMorphosis 18.14 57.03 0.5867 0.2498 30.47 24.73 22.92 46.50 58.62

Table 6: NYU-v2 [29] task-privacy evaluation by interchanging metamorphosis module.

MetaMorphosis Methods Segmentation Depth Surface Normal

Module mIoU (↑) Pix Acc (↑) Abs Err (↓) Rel Err (↓) Mean (↓) Median (↓) 11.25 (↑) 22.5 (↑) 30 (↑)
— MetaMorphosis 18.14 57.03 0.5867 0.2498 30.47 24.73 22.92 46.50 58.62

Segmentation MetaMorphosis 18.14 57.03 1.2541 0.5014 51.97 51.37 1.74 9.14 17.89

Depth 4.27 18.28 0.5867 0.2498 54.77 54.38 4.41 14.41 22.02

Surface-normal 3.37 16.56 1.8694 0.7843 30.47 24.73 22.92 46.50 58.62

Figure 6: Task-oriented feature projection using t-SNE
on NYU-v2 dataset. The triangle points having the same
color refer to segmentation, depth, and surface normal
features for the same input. The distant feature position
for the same input verifies task privacy in t-SNE.

Figure 7: MetaMorphosis achieves better utility whereas
respecting input obfuscation. Higher privacy ensures if
𝜖 → 0. So, the best points having high utility and high
privacy locates in the top left quadrant.

consider adding surface normal estimation with the segmentation

and depth tasks and impose task privacy. We use NYU-v2 dataset in

this regard. We have found similar results as on Cityscapes dataset.

In NYU-v2, we also observe similar performance as compared to

KD-MTL [19] with a little deflection in performance metric (∼< 1%

for segmentation and depth estimation, and ∼< 2% for surface

normal estimation as shown in Table 5. We also evaluate task pri-

vacy on NYU-v2 by interchanging the metamorphosis modules

as shown in Table 6. The mIoU for segmentation drops down to

3.37 ∼ 4.27, the absolute depth error rises to >1, and the mean

value of surface normal goes high from 30.47 to 51.97 ∼ 54.77.To

evaluate the task-specific feature projection, we investigate the

inference of the model trained on NYU-v2 and project the three

task features using t-SNE representation as shown in Figure 6. The

task features for each input are projected by training them using

t-SNE. We show the task projection points in the same color and

form a triangle to observe how separate they are. The higher area

of the triangle means a higher distance. The component values of

t-SNE additionally illustrate the distance among feature projections

for each input.

StateFarm: To evaluate MetaMorphosis in achieving task utility

and input obfuscation, we use the distracted driver recognition

task having 10 classes. At first, we impose differential privacy (DP)

into the model encoder and classifier part. By varying the 𝜖 , we

compute the distracted behavior recognition accuracy. In Figure 7,

we observe the accuracy drops with the increase in privacy (In DP,

the 𝜖 → 0 ensured higher privacy and vice-versa). According to Al-

gorithm 2, to ensure input obfuscation, by adding DP-guarantee to

the encoder side only, MetaMorphosis achieves both utility and pri-

vacy. We also evaluate differential privacy qualitatively. In Figure 8,

reconstruction of the Statefarm dataset is performed using an en-

coder and decoder. Using the encoder features, the distracted driver

recognition task is performed. The decoder succeeds in decoding

the image. Then, we train the encoder using differential privacy.

In this case, the decoder fails to reconstruct images. Even using

the private encoder, we train a decoder to reconstruct the image.
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Table 7: Test results on input obfuscation and task-privacy
on Statefarm dataset

Task Metamorphosis Classifier DeepObfuscator [18] MetaMorphosis

Module

Identity Identity 99.97 100.00

Behavior Identity 30.28 1.49
Behavior Behavior 98.32 98.69

Identity Behavior — 10.34

Even after training, the decoder failed, but we got 98.69% accuracy

for the intended distracted driver recognition task. In Figure 8, we

observe the DP-guarantee of obfuscating deep features in spite of

training a decoder with the obfuscated features.

In addition to a private attribute, we first train the encoder and

the private attribute task jointly using DP on the encoder. After

the models are trained, then we train the intended classification

task using MetaMorphosis, where a task-transformer module is

trained using DP, and it generates distinct features for the dis-

tracted driver recognition task from private features by adding

MS-SSIM to the loss function. In this way, the full process will

maintain content-task privacy. Table 7 shows the evaluation of the

final output of driver identity recognition and distracted driver

behavior recognition tasks. After training with MetaMorphosis, for

driver identity recognition, we got 100%, and for distracted driver

behavior detection, we got 98.69% accuracy. Then by interchanging

the task-transformer module, we compute the accuracy of each

task which implies task privacy. We observe only 1.49% accuracy

if an intruder use behavior features for driver identity classifica-

tion. In comparison to deepObfuscator [18], considering behavior

features as general features to shared (as private features will be

hidden in feature producer), MetaMorphosis achieves only 1.49%

accuracy for driver identity recognition whereas, for deepObfusca-

tor, it achieves 30.38% accuracy. So, MetaMorphosis ensures more

privacy in obfuscating private attributes.

Table 8: Test results on task privacy and input obfuscation
on CelebA

split point Task Metamorphosis Classifier DeepObfuscator MetaMorphosis

Module

5 Gender Gender — 95.94

Smile Gender 55.85 34.56
Smile Smile 89.52 89.89

Gender Smile — 42.49

CelebA: To validate the task privacy and input obfuscation

jointly, We have experimented with CelebA dataset. We consider

two scenarios (1) smile, gender, and (2) smile, gender, cheekbone

classification where gender is a private attribute and input obfusca-

tion is imposed. To achieve this, according to Algorithm 2, we joint

train the encoder and the private gender classifier first. For this, we

also use a comparatively smaller model, ResNet-18, and split it into

different positions to build the encoder and the classifier. Without

loss of generality, we use the same classifier model size for all tasks.

After training of encoder with DP and the private classifier, we use

the task-privacy loss to train the classifier for smile for case (1) and

the smile and cheekbone classifier jointly for case (2). Then, we test

the performance of all tasks and task privacy by interchanging the

task-metamorphosis modules. It is to be noted that gender features

are created so that we can make other attributes’ features distinct

from the private features, and this private attribute feature will be

hidden and kept on the producer side. As in MetaMorphosis, we

show that one private attribute defined for one task may be defined

as non-private by another task. In Table 8, we consider gender as

private and the smile classification as the intended classification

task. Both private and non-private classifiers achieve almost similar

performance as DeepObfuscator [18] but hide privacy information

better (21.29% less accuracy than DeepObfuscator). In this case,

MetaMorphosis achieved 34.56% accuracy while doing gender clas-

sification using the smile classifier. The reason for a bit increase

in gender accuracy with one task (smile) and two tasks (smile and

cheekbone) indicates an intrinsic correlation between the two tasks

as discussed by recent literature [18]. In this case, MetaMorpho-

sis diminishes the correlation more than DeepObfuscator.

We investigate the second scenario where the number of in-

tended tasks is two. In this, we adopt smile and cheekbone classifi-

cation as two intended tasks. In this scenario, the privacy require-

ments are similar to the previous one i.e. input obfuscation and

task privacy. MetaMorphosis classifies smile and cheekbone while

obfuscating the gender attribute and input. In Figure 9, we achieve

89.78 ∼ 89.89% accuracy for smile and 83.02 ∼ 84.2% accuracy for

cheekbone classification using a variety of weight𝜔 of task-privacy

while ensuring input obfuscation using DP. MetaMorphosis has

achieved similar results for intended task classification but hides

privacy 8.69% ∼ 20.42% more than DeepObfuscator [18] using smile

classification task features and 11.69% ∼ 20.12% using cheekbone

classification task features. Relation between 𝜔 and accuracy basi-

cally depends on task-correlation and is interesting to investigate

which we keep as our future work.

5 SYSTEM DEPLOYMENT
For system deployment, the producer will send features, and the

consumer will produce the outputs. But to build such a setup, the

consumer needs to know the ground truth to compute the loss

function. If the features and labels are shared for joint training,

the attacker can eavesdrop on the features and design any system

to capture the feature output relationship. Instead, the labels are

sent at a specific time using an encryption key. Then, the features

can be shared to do the training task. To replicate the scenario,

we consider a Quadro RTX 4000 as the producer (server) and a

Raspberry-pi as well as a Jetson Nano as the consumers (client) in

Figure 10. At the forward pass of training, the producer sends the

intermediate features to the consumers. The consumers produce the

output, compute the loss function and send the computed gradient

in the backward pass. Based on the gradient, the producer updates

its parameters. Based on input obfuscation, the producer is trained

with a DP-optimizer.

We demonstrate a split neural network using ResNet-18 model

with different indices as split points and execute the training. As

an MLaaS platform, the service provider should offer features such

that the consumer can do the task with little effort. With the smaller
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Figure 8: Input obfuscation on the StateFarm dataset. (a) Top left: Sample images. Top right: images decoded from a non-private
encoder. Bottom right: images decoded from a private encoder trained with differential privacy having 𝜖 = 4, 𝛿 = 1𝑒−4 and a
decoder (Figure 8b). Bottom left: Images generated by a decoder after training using the same private encoder. (b) Decoder
model by the attacker for image reconstruction attack on private features.

Figure 9: Smile and cheekbone classification from CelebA
while obfuscating gender attribute using MetaMorphosis.

Figure 10: Producer-Consumer Deployment

Table 9: Round trip time of sending features and collecting
the gradients vs the consumer (client) model size vs the in-
termediate feature size.

Server Model Client Model Raspberry Pi Jetson nano Feature Feature size

(MB) (MB) RTT (ms) RTT (ms) KB

42.66 0.02 3.95 0.73 512 × 1 × 1 1.99

10.64 32.04 112.67 10.11 256 × 4 × 4 14.86

0.61 42.07 173.23 18.60 64 × 16 × 16 65.92

consumer model size, the round trip time will be lower for the accu-

mulation of gradients by the producer. Table 9 shows the higher the

round trip time with the higher feature, the larger the client model

size. Due to the usage of GPU by Nano, the difference between the

round-trip time of Jetson Nano and Raspberry-Pi is significant.

We also investigate the effect of adding a task metamrophosis

module to the overall server latency. The latency of the metamor-

phosis module depends on the input shared by the encoder and

its size. Figure 10 shows the effect of inference latency of adding

the metamorphosis module with the encoder for running the smile

classification task with the encoder, smile metamorphosis mod-

ule, and the classifier. The little difference in latency proves the

metamorphosis module to be a lightweight one.

6 ABLATION STUDY
We evaluate the performance of the Cross-SEC module, and we

also experiment without crossing the connections after getting the

attention of one portion of the features. In Table 11, joint training of

segmentation and depth estimation is done where the task-privacy
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Table 10: Effect of MetaMorphosis module to Server latency

MetaMorphosis Model Split Server MetaMorphosis Server (ms)

Module Index Size Module Size Latency (ms)

✗ ResNet-18 5 640.60 KB 54.5 KB 0.068

✓ 0.106

✗ ResNet-18 7 11.20 MB 791.80 KB 0.244

✓ 0.265

✗ ResNet-18 8 44.70 MB 3.20 MB 0.293

✓ 0.359

module is the Cross-SEC module and SEC module where no cross-

connection between features occurs. Cross-SEC morphosis module

performs better in achieving the metrics for segmentation and

depth estimation than the SEC module. Regarding task privacy,

cross-SEC achieves lower pixel accuracy, mIOU for segmentation

with depth features, and lower absolute error for depth estimation

with segmentation features than SEC module.

Table 11: Importance of Cross-SEC module over SEC module
without cross attention

MetaMorphosis Methods Segmentation Depth

Module mIoU (↑) Pix Acc (↑) Abs Err (↓) Rel Err (↓)
— MTL-SEC 57.79 93.39 0.0148 45.07

Segmentation MTL-SEC 57.79 93.39 0.1022 110.09

Depth 3.92 23.97 0.0148 45.07

— MTL-Cross-SEC 59.79 93.49 0.0141 31.89

Segmentation MTL-Cross-SEC 59.79 93.49 0.1079 99.07

Depth 1.47 7.33 0.0141 31.89

Table 12: Input-attribute obfuscation trade-off

Method Model Provider Classifier MetaMorphosis Classifier Accuracy (%)

Size Size Module

(MB) (MB)

DeepObfuscator [18] VGG16 1.0 536 universal gender 55.85

MetaMorphosis ResNet18 3.00 42.00 gender gender 95.44

smile smile 87.78

gender smile 42.69

smile gender 45.14

11.97 33.60 gender gender 94.19

smile smile 82.09

gender smile 42.56

smile gender 61.35

47.9 0.006 gender gender 92.74

smile smile 58.83

gender smile 42.33

smile gender 38.65

To observe the trade-off between input and privacy attribute

obfuscation, we change the encoder and classifier size by changing

the split index of the ResNet-18 model. We identify an increase in

privacy attribute leakage with the decrease of the classifier model

size and expansion of the encoder model size (Table 12). We have

found the gender classifier accuracy 45.14%, and 61.25 with lowering

the classifier size from 42 MB to 33.6 MB. It is even worse for a

classifier having 0.006 MB. We observe that with the increase of the

encoder model and the decrease of the classifier model, it is difficult

for the intended classification task tomeet the input obfuscation and

task privacy together. As more noise is fed to the encoder model to

maintain the 𝜖-DP while training, less performance is desired with

the decreased classifier model size, as also evident from Figure 7.

DeepObfuscator used VGG-16 where only 1 MB portion is defined

as feature provider, and the 536 MB is designated to the intended

class classifier whereas in MetaMorphosis, even using a small model

ResNet-18, with higher encoder size, we achieve almost the same

accuracy as DeepObfuscator and hides privacy attribute better by

lowering gender classification task. Finding the optimal split index

between the encoder and the task classifier is an interesting area

to achieve input obfuscation and task privacy. We have kept this

discussion as our future work.

7 RELATEDWORK
Various methods for solving complex segmentation and depth

estimation-based multi-task learning are discussed in the litera-

ture [4, 31, 40]. A knowledge distillation technique is proposed by

Liu et al. [23] specifically for semantic segmentation tasks. Nguyen

et al. [30] proposed a convolutional neural network to identify mod-

ified images, and the trained network can give a segmented mask

for the modified region. An empirical study has been conducted

by Standley et al. [34] to identify the factors that influence the

performance of multi-task learning and proposed a framework to

limit the number of multi-task models based on the correlation

of tasks. SSIM [41] provides an image quality assessment metric

called structural similarity (SSIM) to evaluate the similarity be-

tween two images. It can also be used as a loss function to impose

dissimilarity between features by shifting the value close to zero.

Attention modules are proposed in the literature [39, 47] to capture

important features for target accuracy without dimensionality re-

duction. Chen et al. [6] propose a gradient normalization algorithm

for training multi-task models to balance the training processes

of different tasks. The algorithm improves accuracy and decreases

the over-fitting effects for various kinds of tasks and on different

datasets. Transformer-based cross-task attention mechanism [25]

projects the features of one task to another. But the notion of distinct

feature generation to achieve privacy is absent. In collaborative

intelligence, to build a more efficient system, many layer output

compression methods [7, 8, 44] and gradient compression meth-

ods [36] are suggested. Other [38, 48] focuses on multi-task feature

compression. These compression techniques, referred to as Video

Coding for Machine (VCM) [43], aims to reduce the communica-

tion overhead while maintaining the system performance, while

many efforts [14, 15, 22, 32, 46, 47] are also devoted to optimizing

the computational overhead. On the other hand, to build a good

collaborative intelligent system, besides improving its efficiency,

privacy-preserving feature encoding schemes also need to protect

the privacy of data holders. In the case of differential privacy in

deep learning, the DP-SGD algorithm was proposed by Abadi et

al. [1]. Many variants of differential privacy, such as label differen-

tial privacy, are discussed in [12]. Table 1 illustrates the comparison

of MetaMorphosis with recent similar literature.

8 CONCLUSION
In this paper, we propose MetaMorphosis that enables input obfus-

cation and task privacy for multi-task learning in a collaborative

intelligence setup. In this paper, the main focus lies in sharing data

and computation securely between a deep feature provider-based

MLaas platform and a number of consumers who subscribe to the

provider according to interest. To ensure this, MetaMorphosis has
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gone through a two-phase training scheme where the first phase en-

sures input privacy and private attribute privacy. Then the second

training phase ensures task privacy among shared tasks through a

unique squeeze-excitation based MetaMorphosis module. Experi-

mental results on different domain datasets show the supremacy

of MetaMorphosis over recent multi-task and adversarial learning

methods. The MetaMorphosis also positively affects the sequential

addition of new tasks in a multi-task environment because of its

two-phase training scheme. This paper opens up some questions

and disadvantages of having a universal feature for a split learn-

ing system as well as in a split federated learning system. As the

performance of a federated learning system mostly depends on

the honesty of the clients, the intuitive creation of task features de-

spite the task correlation is still challenging with the increase in the

number of tasks. In the future, we will focus on how task-variant

features can be used to enable more privacy in federated learning

systems.
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